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Quiz

For each of the following statements, decide T/F/Unknown.
a) All problems in P can be solved in n%%1° time.

b) If a problem is in NP, then it cannot be solved in n2°1° time.

c) If a problem is NP—Complete, then the best algorithm for it takes 2™ time.
d) There exists a problem in NP but not in P.



NP-Completeness

Def. A problem Y is NP-Complete if
1. Y € NP
2. VX ENP, X <pyarp ¥

Theorem. Suppose Y is NP-Complete, then Y is solvable in poly-
time iff. P = NP

Pf.
* (<) If P = NP, then Y can be solved in poly-time since Y € NP
* (=) If Y is solvable in poly-time, consider any X € NP.

Since X <p garp Y, X has a poly-time algorithm as well
.,e,NPCS P=> P =NP

Fundamental question: Are there natural NP-complete problems?
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The "first" NP-Complete problem

Theorem. Circuit—SAT is NP-Complete [Cook 1971,Levin 1973]

Input. A combinational circuit built out of AND/OR/NOT gates

Goal. Decide if there is a way to set the circuit inputs so that the
output is 17

Al s

1 0 ? ? @ N
hard-coded inputs inputs Stephen Cook Leonid Levm
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Example

Given. Graph G

Construction. Circuit K whose inputs can be set so that K outputs
true iff. graph G has an independent set of size 2

________________________________________________________

Are the two nodes
' chosen connected

- @ by an edge

G=U,E)yn=3

________________________________________________________

n . n inputs
(2) hard-coded inputs (nodes in
(graph description) » indep. set)
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Establishing NP-Completeness

Once we establish first "natural” NP-complete problem, others fall
like dominoes ...

Recipe to establish NP-Completeness of problem Y

|. Show that Y € NP
2. Choose an NP—complete problem X

3. Provethat X <pgqrp Y

Justification. If X is an NP-complete problem, and Y is a problem
in NP with the property that X <p x4, Y then Y is NP-complete (by
transitivity)



NP-Completeness
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MY HOBBY:
EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS
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FRENCH FRIES 2.75
SIDE 5ALAD 3.35
HOT WINGS 3.55
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— A FRST AS POSSIBLE, (F (OURSE. WANT
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Alibaba’s knapsack
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Practicing reductions

= Circuit—SAT < 3—SAT + 3—SAT <p, INDEPENDENT—-SET
<p VERTEX—COVER <, SET—COVER

= 3—SAT < HAM—CYCLE
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3—SAT is NP-Complete

Theorem. 3—SAT is NP-Complete X0
Pf. We show Circuit—SAT <, 3—SAT

X1 X9
* Given a circuit K, create a 3—SAT variable x; for each gate
* Make circuit compute correct values at each node Xsg . X4 - X3
0 . .
Xy = X3 =>va.X'3,xZ VX3
X =X4VXs DX VXX VXs, XV Xy V X Circuit K satisfiable iff.

3 truth assignment
satisfying all clauses
constructed

Xo =X1/AX2  =2x3Vxy,XoVxy,XxXoVXVXxy
* Hard-coded input values and output value
xsc=0=>x5 x9=1=xg
* Final step: turn clauses into exactly 3 literals by adding dummy variables
EX. Xy VX, =2>x, VX, VY, X1 VX, VY

| Don't forget to show 3—SAT € NP
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(DIR—)HAM—CYCLE is NP-Complete

(DIR—)HAM~—CYCLE. Given a directed graph G = (V, E), does there
exist a directed cycle I that visits every node exactly once?

Theorem. 3—SAT <, (DIR—)HAM—CYCLE
Pf. Given 3—SAT instance ® in CNF: n variables x; and k clauses C;

]

Intuition: traverse row i from left to right & set variable x; = true
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3—SAT <, (DIR—)HAM—CYCLE

Ci =x1VXy VX3 [+ Cz=x1Vx2Vx3}
N 7

Claim. @ is satistfiable iff. G has a Hamiltonian cycle



3—SAT <, (DIR—)HAM—CYCLE

Claim. @ is satistfiable iff. G has a Hamiltonian cycle

(=) Suppose @ has a satisfying assign. x*. Define an H-Cycle in G:
e if x; = true, traverse row x; from left to right
« if x; = false, traverse row x; from right to left

* For each clause (; pick (only) one row i and take a detour

(<) Suppose G has a H-Cycle I'. Define a satisfying assign. in &:

* In T, replace edges going/leaving C; with the edge of the corresponding two nodes
in some row. This gives a new cycle I in G — {C;, C5, ..., Ci}

 In T, set x; = true if I'" traverses row i left-to-right; set x; = false ¢

_____________
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