
Fall’19 CSCE 629

Analysis of
Algorithms

W, 11/06/19

Lecture 26

• Reductions

Credit: based on slides by A. smith & K. Wayne

Fang Song
Texas A&M U

Recall: polynomial-time reduction

1

§Def. Problem 𝑋 polynomial reduces to Problem 𝑌 if arbitrary
instance of 𝑋 can be solved using:
• Polynomial number of standard computation steps
• & polynomial number of calls to oracle that solves 𝐴

Notation. 𝑋 ≤%,'(() 𝑌 (or 𝑋 ≤% 𝑌)
! Mind your direction, don’t confuse 𝑋 ≤* 𝑌 with 𝑌 ≤* X

Quiz

2

§Which of the following poly-time reductions are known?
A. FIND−MAX−FLOW ≤% FIND−MIN−CUT
B. FIND−MIN−CUT ≤% FIND−MAX−FLOW
C. Both A and B
D. Neither A nor B

VALUES VS. ACTUAL FLOW/CUT

Simplification: decision problems

§ Self-reducibility. Search problem ≤% Decision version
• Applies to all NP-complete problems in this chapter [Recall HW1]
• Justifies our focus on decision problems

3

§ Search problem. Find some structure.
• Example. Find a minimum cut.

§Decision problem.
• Problem 𝑋 is a set of strings [e.g., strings that encode graphs containing a triangle]
• Instance: string 𝑠 [e.g., encoding of a graph]
• YES instance: 𝑠 ∈ 𝑋; NO instance: 𝑠 ∉ 𝑋
• Algorithm 𝐴 solves problem 𝑋: 𝐴 𝑠 = 𝑦𝑒𝑠 iff. s ∈ 𝑋
• Ex. Does there exist a cut of size ≤ 𝑘?

Polynomial-time transformation

4

§Karp reduction. (Decision) problem 𝑋 polynomial transforms to
Problem 𝑌 if given any 𝑥, we can construct 𝑦 such that
• size 𝑦 = 𝑝𝑜𝑙𝑦(|𝑥|)
• 𝑥 ∈ 𝑋 iff. 𝑦 ∈ 𝑌. 𝑋 ≤%,XYZ[𝑌

Polynomial-time reduction vs. transformation

5

𝑋 ≤%,'(() 𝑌 𝑋 ≤%,XYZ[𝑌

N.B. Polynomial transformation is polynomial reduction with just
one call to oracle for 𝑌, exactly at the end of the algorithm for 𝑋.
Open question. Are these two concepts the same?

Cook (Turing) reduction vs. Karp reduction

(Decision problems)

𝑋 slover

𝑌 slover

𝑥

𝑥′
𝑏 ∈ {0,1}𝑏

𝑋 slover𝑥

𝑦
𝑌 slover

𝑥b′
𝑦b′

Standard comp.

Basic reduction strategies

§ Reduction by simple equivalence

§ Reduction from special case to general case

§ Reduction by encoding with gadgets

6

Independent set

Input. Graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘
• Independent set 𝑆 ⊆ 𝑉: subset of vertices such that for each edge at most one of

its endpoints is in 𝑆
Goal. Decide if there is an independent set 𝑆 with S ≥ 𝑘

7

independent set

• Is there an independent set of size ≥ 6? J

L• Is there an independent set of size ≥ 7?

Vertex cover

Input. Graph 𝐺 = (𝑉, 𝐸) and an integer 𝑘
• Vertex cover 𝑆 ⊆ 𝑉: subset of vertices such that for each edge at least one of its

endpoints is in 𝑆
Goal. Decide if there is an vertex cover 𝑆 with S ≤ 𝑘

8

Vertex cover

• Is there an vertex cover of size ≤ 4? J

L• Is there an independent set of size ≤ 3?

Independent set and Vertex cover

Claim. VERTEX−COVER ≡% INDEPENDENT−SET
Pf. We show 𝑆 is an independent set iff. 𝑉\𝑆 is a vertex cover

9

independent set

vertex cover

Independent set and Vertex cover

Claim. VERTEX−COVER ≡% INDEPENDENT−SET
Pf. We show 𝑆 is an independent set iff. 𝑉\𝑆 is a vertex cover

10

≤ (⇐) Let 𝑆 be any independent set
• Consider an arbitrary edge (𝑢, 𝑣)
• 𝑆 independent ⇒ 𝑢 ∉ 𝑆 or 𝑣 ∉ 𝑆 ⇒ 𝑢 ∈ 𝑉\𝑆 or 𝑣 ∈ 𝑉\𝑆
• Thus 𝑉\S covers (𝑢, 𝑣)

independent set

vertex cover

≥ (⇒) Let 𝑉\𝑆 be any vertex cover
• Consider two nodes 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆
• Observe that 𝑢, 𝑣 ∉ 𝐸 since 𝑉\𝑆 is a vertex cover
• Thus no two nodes in 𝑆 are joined by an edge
⇒ 𝑆 is an independent set

Basic reduction strategies

§ Reduction by simple equivalence

§ Reduction from special case to general case

§ Reduction by encoding with gadgets

11

Input. Set 𝑈 of 𝑛 elements, 𝑆z, … , 𝑆| of subsets of 𝑈, integer 𝑘
Goal. Decide if there is an collection of ≤ 𝑘 of these sets whose
union is equal to 𝑈

Set cover

12

Sample application.
• Set 𝑈 of 𝑛 capabilities that our computer system needs to have
• 𝑚 available pieces of software, 𝑖th software provides the set 𝑆b ⊆ 𝑈 capabilities
• Goal: achieve all 𝑛 capabilities using fewest pieces of software

43

56
7

1
2

𝑈𝑈 = {1,2,3,4,5,6,7}
𝑘 = 2
𝑆z = 3,7 , 𝑆� = 3,4,5,6
𝑆� = 1 , 𝑆� = 2,4
𝑆� = 5 , 𝑆� = 1,2,6,7

Vertex cover reduces to set cover

13

𝑈 = {1,2,3,4,5,6,7}
𝑘 = 2
𝑆Y = 3,7 , 𝑆� = 3,4,5,6
𝑆� = 1 , 𝑆� = 2,4
𝑆� = 5 , 𝑆� = 1,2,6,7

Claim. VERTEX−COVER ≤% SET−COVER
Pf. Given a VERTEX−COVER instance 𝐺 = ⟨ 𝑉, 𝐸 , 𝑘⟩, we construct a
SET−COVER instance whose solution size equals the size of the
vertex cover instance
Reduction: on input ⟨𝐺 = 𝑉, 𝐸 , 𝑘⟩
Output: // a SET-COVER instance

𝑘 = 𝑘, 𝑈 = 𝐸, 𝑆� = 𝑒 ∈ 𝐸: 𝑒 incident to 𝑣 for	every	𝑣 ∈ 𝑉

⇒

b

d

c

a

e

f

𝑘 = 2
𝑒� 𝑒� 𝑒� 𝑒�

𝑒�𝑒z
𝑒�

Basic reduction strategies

§ Reduction by simple equivalence

§ Reduction from special case to general case

§ Reduction by encoding with gadgets

14

§ Literal: A Boolean variable or its negation 𝑥b or 𝑥b
§Clause: A disjunction (OR) of literals 𝐶� = 𝑥z ∨ 𝑥� ∨ 𝑥�
§Conjunctive normal form: A propositional formula that is

conjunction (AND) of clauses Φ = 𝐶z ∧ 𝐶� ∧ ⋯∧ 𝐶|

Satisfiability

15

SAT. Given CNF formula Φ, is there a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals

EX. 𝑥z ∨ 𝑥� ∨ 𝑥� ∧ 𝑥z ∨ 𝑥� ∨ 𝑥� ∧ 𝑥� ∨ 𝑥� ∧ (𝑥z ∨ 𝑥� ∨ 𝑥�)
YES. 𝑥z = true, 𝑥� = true, 𝑥� = false

3-SAT reduces to independent set

16

Claim. 3−SAT ≤% INDEPENDENT−SET
Pf. Given a 3−SAT instance Φ, we construct an INDEPENDENT−SET
instance (𝐺, 𝑘) that has an ind. set of size 𝑘 iff. Φ is satisfiable.
Reduction: on input Φ
Let 𝐺 contain 3 vertices for each clause,
one for each literal

Connect 3 literals in a clause in a triangle
Connect literal to each of its negations
𝑘 = |Φ| \\ 𝑘=# clauses in Φ
Output: ⟨𝐺, 𝑘⟩

Φ = 𝑥z ∨ 𝑥� ∨ 𝑥� ∧ 𝑥z ∨ 𝑥� ∨ 𝑥� ∧ (𝑥z ∨ 𝑥� ∨ 𝑥�)𝑘 = 3

⇒

𝑥�

𝑥z

𝑥z

𝑥�

𝐺

𝑥� 𝑥z 𝑥�

𝑥�

𝑥�

