W, 11/06/19

Fall'19 CSCE 629

Analysis of Algorithms

Fang Song Texas A&M U

Lecture 26

Reductions

Credit: based on slides by A. smith & K. Wayne

Def. Problem X polynomial reduces to Problem Y if arbitrary instance of X can be solved using:

Recall: polynomial-time reduction

- Polynomial number of standard computation steps
- & polynomial number of calls to oracle that solves A

Notation. $X \leq_{P,Cook} Y$ (or $X \leq_{P} Y$)

! Mind your direction, don't confuse $X \leq_P Y$ with $Y \leq_P X$

Which of the following poly-time reductions are known?

Quiz

- A. FIND-MAX-FLOW \leq_P FIND-MIN-CUT
- B. FIND-MIN-CUT \leq_P FIND-MAX-FLOW
- C. Both A and B
- D. Neither A nor B

VALUES VS. ACTUAL FLOW/CUT

Search problem. Find some structure.

• Example. Find a minimum cut.

Decision problem.

• Problem X is a set of strings [e.g., strings that encode graphs containing a triangle]

Simplification: decision problems

- Instance: string *s* [e.g., encoding of a graph]
- YES instance: $s \in X$; NO instance: $s \notin X$
- Algorithm A solves problem X: A(s) = yes iff. $s \in X$
- Ex. Does there exist a cut of size $\leq k$?

• Self-reducibility. Search problem \leq_P Decision version

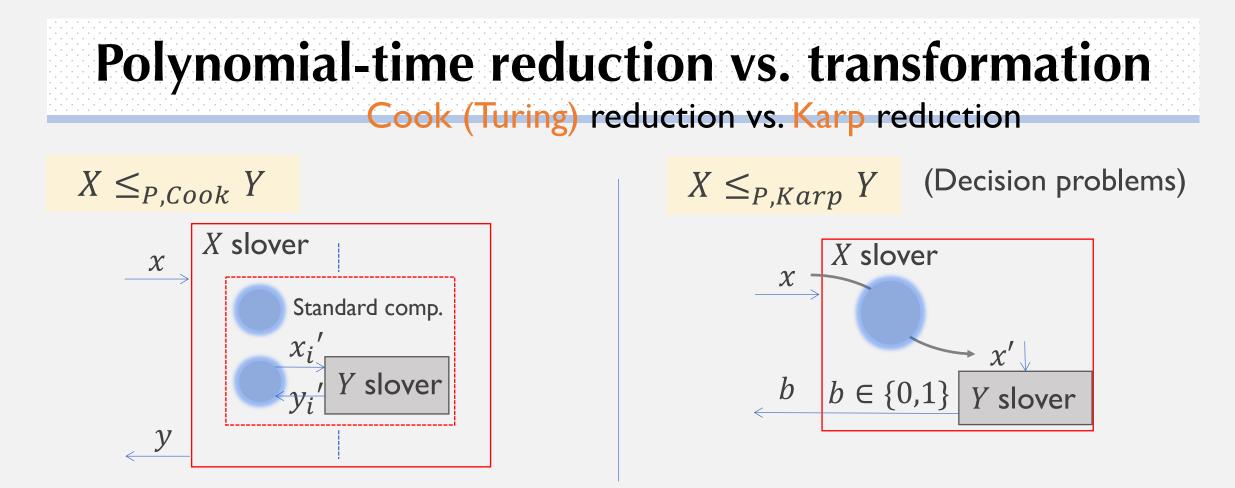
- Applies to all NP-complete problems in this chapter [Recall HWI]
- Justifies our focus on decision problems

Karp reduction. (Decision) problem X polynomial transforms to Problem Y if given any x, we can construct y such that

Polynomial-time transformation

- size |y| = poly(|x|)
- $x \in X$ iff. $y \in Y$.

 $X \leq_{P,Karp} Y$



N.B. Polynomial transformation is polynomial reduction with just one call to oracle for *Y*, exactly at the end of the algorithm for *X*.

Open question. Are these two concepts the same?

Reduction by simple equivalence

Reduction from special case to general case

Basic reduction strategies

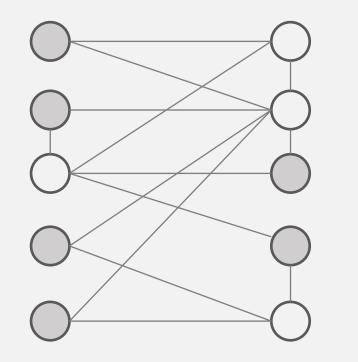
Reduction by encoding with gadgets

Input. Graph G = (V, E) and an integer k

 Independent set S ⊆ V: subset of vertices such that for each edge at most one of its endpoints is in S

Independent set

Goal. Decide if there is an independent set S with $|S| \ge k$



) independent set

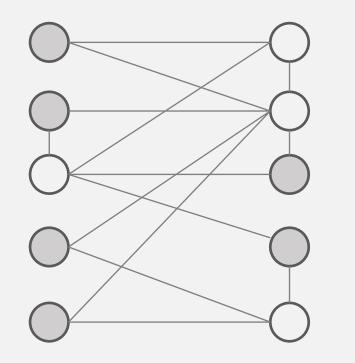
- Is there an independent set of size $\geq 6?$ \bigcirc
- Is there an independent set of size $\geq 7?$

Input. Graph G = (V, E) and an integer k

 Vertex cover S ⊆ V: subset of vertices such that for each edge at least one of its endpoints is in S

Vertex cover

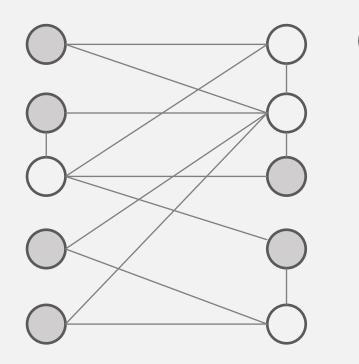
Goal. Decide if there is an vertex cover S with $|S| \leq k$



) Vertex cover

- Is there an vertex cover of size $\leq 4?$
- Is there an independent set of size $\leq 3?$

Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET Pf. We show S is an independent set iff. $V \setminus S$ is a vertex cover



) independent set

Independent set and Vertex cover

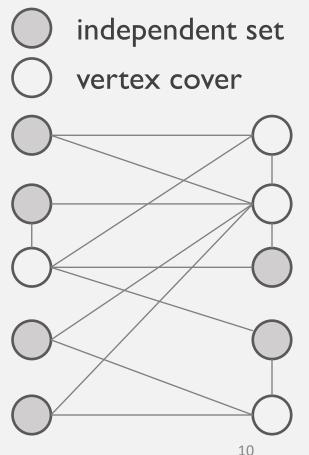
) vertex cover

Claim. VERTEX-COVER \equiv_P INDEPENDENT-SET

Pf. We show S is an independent set iff. $V \setminus S$ is a vertex cover

Independent set and Vertex cover

- \leq (\Leftarrow) Let *S* be any independent set
 - Consider an arbitrary edge (u, v)
 - S independent $\Rightarrow u \notin S$ or $v \notin S \Rightarrow u \in V \setminus S$ or $v \in V \setminus S$
 - Thus $V \setminus S$ covers (u, v)
- \geq (\Rightarrow) Let $V \setminus S$ be any vertex cover
 - Consider two nodes $u \in S$ and $v \in S$
 - Observe that $(u, v) \notin E$ since $V \setminus S$ is a vertex cover
 - Thus no two nodes in S are joined by an edge
 - \Rightarrow S is an independent set



Reduction by simple equivalence

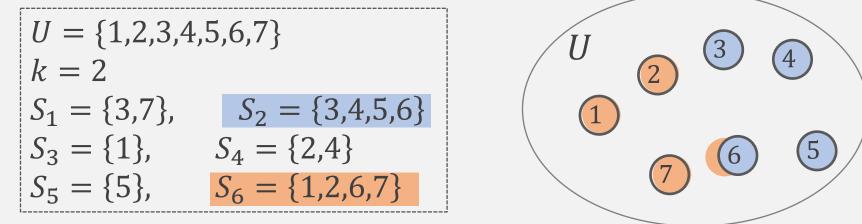
Reduction from special case to general case

Basic reduction strategies

Reduction by encoding with gadgets

Input. Set U of n elements, $S_1, ..., S_m$ of subsets of U, integer k Goal. Decide if there is an collection of $\leq k$ of these sets whose union is equal to U

Set cover



Sample application.

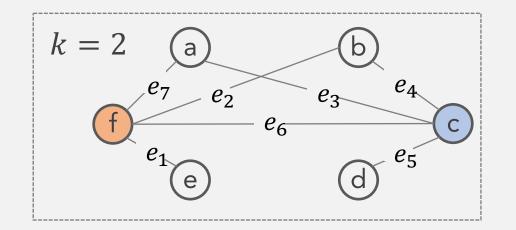
- Set U of n capabilities that our computer system needs to have
- *m* available pieces of software, *i*th software provides the set $S_i \subseteq U$ capabilities
- Goal: achieve all n capabilities using fewest pieces of software

Claim. VERTEX-COVER \leq_P SET-COVER

Pf. Given a VERTEX-COVER instance $G = \langle (V, E), k \rangle$, we construct a SET-COVER instance whose solution size equals the size of the vertex cover instance

Vertex cover reduces to set cover

Reduction: on input $\langle G = (V, E), k \rangle$ Output: // a SET-COVER instance $k = k, U = E, S_v = \{e \in E : e \text{ incident to } v\}$ for every $v \in V$



 \Rightarrow

$$U = \{1, 2, 3, 4, 5, 6, 7\}$$

$$k = 2$$

$$S_a = \{3, 7\}, \quad S_c = \{3, 4, 5, 6\}$$

$$S_e = \{1\}, \quad S_b = \{2, 4\}$$

$$S_d = \{5\}, \quad S_f = \{1, 2, 6, 7\}$$

Reduction by simple equivalence

Reduction from special case to general case

Basic reduction strategies

Reduction by encoding with gadgets

Satisfiability

- Literal: A Boolean variable or its negation x_i or $\overline{x_i}$
- Clause: A disjunction (OR) of literals $C_j = x_1 \vee \overline{x_2} \vee x_3$
- Conjunctive normal form: A propositional formula that is conjunction (AND) of clauses $\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

SAT. Given CNF formula Φ , is there a satisfying truth assignment?

EX.
$$(\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

YES. $x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}$

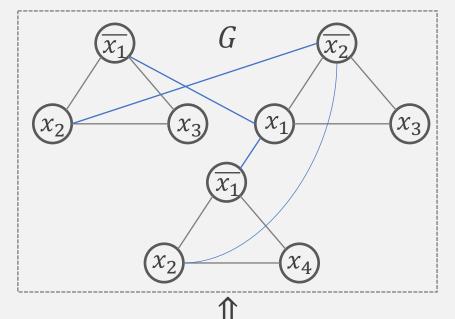
3-SAT. SAT where each clause contains exactly 3 literals

Claim. $3-SAT \leq_P INDEPENDENT-SET$

Pf. Given a 3–SAT instance Φ , we construct an INDEPENDENT–SET instance (*G*, *k*) that has an ind. set of size *k* iff. Φ is satisfiable.

3-SAT reduces to independent set

Reduction: on input Φ Let *G* contain 3 vertices for each clause, one for each literal Connect 3 literals in a clause in a triangle Connect literal to each of its negations $k = |\Phi| \setminus k=\#$ clauses in Φ Output: $\langle G, k \rangle$



 $k = 3 \qquad \Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$