
Fall’19 CSCE 629

Analysis of
Algorithms

M, 11/04/19

Lecture 25

• Computational intractability

Credit: based on slides by A. smith & K. Wayne

Fang Song
Texas A&M U

Fundamental theorem of linear programming

1

(Primal) Max 𝒄"𝒙
Subject to:

𝐴𝒙 ≤ 𝒃
𝒙 ≥ 𝟎

(Dual) Min 𝒚"𝒃
Subject to:

𝒚"𝑨 ≥ 𝒄"
𝒚 ≥ 𝟎

§Weak duality. If 𝒙 is a feasible solution for a linear program ⊓, and
𝒚 is a feasible solution for its dual ⊔, then 𝒄"𝒙 ≤ 𝒚𝑻𝐴𝒙 ≤ 𝒚"𝒃.

§ Strong duality. ⊓ has an optimal solution and 𝒙∗ if and only if its
dual ⊔ has an optimal solution 𝒚∗ such that 𝒄"𝒙 = 𝒚𝑻𝐴𝒙 = 𝒚"𝒃.

Primal feasible Primal
OPT

Dual
OPT Dual feasible

Duality gap is zero

Duality example

2

(P) Maximize: 𝑥1 + 5𝑥4
Subject to:

0 ≤ 𝑥1 ≤ 12
0 ≤ 𝑥4 ≤ 15
𝑥1 + 𝑥4 ≤ 24

(D) Minimize: 12𝑦1 + 15𝑦4 + 24𝑦:
Subject to:

𝑦1 + 𝑦: ≥ 1
𝑦4 + 𝑦: ≥ 5
𝑦1, 𝑦4, 𝑦: ≥ 0

Max= 84, 𝑥1 = 9, 𝑥4 = 15 Min= 84, 𝑦1 = 0, 𝑦4 = 4, 𝑦: = 1

(magic) multipliers

Certificate: 𝑥1 + 5𝑥4 = 4 ⋅ 𝑥4 + 1 ⋅ (𝑥1 + 𝑥4) ≤ 4 ⋅ 15 + 24 = 84

A dialogue between Dantzig & von Neumann

3

George Dantzig

Let me show you my exciting finding: simplex algorithm for LP
… … … [next 30 mins]

Get to the point, please!

John von Neumann

OK! Em... To be concise … [next 3 mins]

Ah, that!

[next 60 mins]
…. (convexity)… (fixed point) … (2-player game) …
so, there is duality which’d follow by my min-max theorem …

For any matrix 𝐴, min
D
max
G

𝑥𝐴𝑦 = max
G
min
D
𝑥𝐴𝑦.

A refection on the algorithmic journey

§ So far: algorithm design triumph

4

Examples

• Greedy • 𝑂(𝑛 log 𝑛) interval scheduling

• Divide-and-conquer • 𝑂(𝑛 log 𝑛) Merge sort

• Dynamic programming • 𝑂(𝑛4) edit distance

• Linear programming (duality) • 𝑂(𝑛:) bipartite matchin

• Local search
• Randomization
• …

§New goal: understand what is hard to compute

Computational intractability

5

§Computability: can you solve it, in principle?

§Complexity: can you solve it, under resource constraints?

Church-Turing Thesis. A function can be computed in any reasonable
model of computation iff. it is computable by a Turing machine.

Halting problem is uncomputable [Given program code, will this program
terminate or loop indefinitely?]

Extended Church-Turing Thesis. A function can be computed efficiently
in any reasonable model of computation iff. it is efficiently computable by a
Turing machine.

Disprove ECT???

Central ideas in complexity

§ Poly-time as “feasible”
• Most natural problems either are easy (e.g., 𝑛:) or no poly-time alg. known

6

§Classify problems by “hardness”
• 𝐏 = {problems that are easy to answer}
• 𝐍𝐏 = {problems that are easy to verify given hint} [lots of examples, stay tuned!]
• 𝐂𝐨𝐦𝐩𝐥𝐞𝐭𝐞 problems: “hardest” in a class

𝐍𝐏
Graph isomorphism
Short lattice vector

𝐏 Sorting

𝐍𝐏𝐂
Satisfiability (SAT)

§ Reduction : relating hardness (𝐴 ≤ 𝐵 ⇒ 𝐴 no harder than 𝐵)

What’d be considered “feasible”?

Q. Which problems will we be able to solve in practice?
A. Those with poly-time algorithms. [von Neumann1953,Godel1956,
Cobham1964,Edmonds1965,Rabin1966]

7

YES Probably No

Shortest path Longest path

Matching 3D-matching

Min cut Max cut

2-SAT 3-SAT

Planar 4-color Planar 3-color

Bipartite vertex cover Vertex cover

Primality Factoring

Classify problems

Desiderata. Classify problems as those that can be solved in
polynomial-time and those that cannot.

8

§ Provably require exponential time.
• Given a Turing machine, does it HALT in at most 𝑘 steps?
• Given a board position in an 𝑛×𝑛 generalization of chess, can black win?

LFrustrating news: Huge number of fundamental problems have
defied classification for decades.
• We will show: these problems are “computationally equivalent ” and appear to be

different manifestations of one hard problem.

Roughly: C program on
machine with infinite memory

Tool: polynomial-time reduction

Desiderata’. Suppose we can solve 𝑌 in poly-time. What else could
we solve in polynomial time?

9

§ Reduction. Problem 𝑋 polynomial reduces to Problem 𝑌 if
arbitrary instance of 𝑋 can be solved using:
• Polynomial number of standard computation steps
• & polynomial number of calls to oracle that solves 𝐴

Notation. 𝑋 ≤],^__` 𝑌 (or 𝑋 ≤] 𝑌)

N.B. We pay for time to write down instances to oracle
⇒ instances of 𝑌 must be of polynomial size.

! Mind your direction, don’t
confuse 𝑋 ≤a 𝑌 with 𝑌 ≤a X

What polynomial-time reductions buy us

Bottomline. Reductions classify problems acc. to relative difficulty

10

§Design algorithms. If 𝑋 ≤] 𝑌 and 𝑌 can be solved in poly-time,
then 𝑋 can also be solved in polynomial time.

§ Establish intractability. If 𝑋 ≤] 𝑌 and 𝑋 cannot be solved in poly-
time, then 𝑌 cannot be solved in polynomial time.

§ Establish equivalence. If 𝑋 ≤] 𝑌 and 𝑋 ≤] 𝑌, then 𝑋 ≡] 𝑌.

Quiz

11

§Which of the following poly-time reductions are known?
A. FIND-MAX-FLOW ≤] FIND-MIN-CUT
B. FIND-MIN-CUT ≤] FIND-MAX-FLOW
C. Both A and B
D. Neither A nor B

VALUES VS. ACTUAL FLOW/CUT

