M, 11/04/19

--

Fall’'19 CSCE 629 Lecture 25

A"ﬁlygis Of « Computational intractability
Algorithms

__

--

Fang Song
Texas A&M U

__

Credit: based on slides by A. smith & K.VWayne

Fundamental theorem of linear programming

Primal Dual

Primal feasible OPT OPT Dual feasible
Duality gap is
(Primal) Max c’x (Dual) Min y'b
Subject to: Subject to:
Ax<b y'd>c"
x=0 y=0

= Weak duality. If x is a feasible solution for a linear program M, and
y is a feasible solution for its dual U, then ¢Tx < yTAx < yTb.

= Strong duality. M has an optimal solution and x* its
dual U has an optimal solution y* such that ¢"x = y"Ax = y"b.

Duality example

(P) Maximize: x; + 5x,
Subject to:

0<x; <12

0< X9 < 15

X1 + X2 < 24

Max = 84, X1 = 9,X2 =15

(D) Minimize: 12y, + 15y, + 24y,
Subject to:
yityz =1
Y2ty3=5
Y1,Y2,Y3 =0

Min = 84, V1 = O,yz = 4‘,y3 =1

AN

(magic) multipliers

Certificate: x; + 5x, =4 -x, +1 - (x; + x,) < 4-15+ 24 = 84

A dialogue between Dantzig & von Neumann

Let me show you my exciting finding: simplex algorithm for LP
... [next 30 mins]

Get to the point, please!

OK! Em...To be concise ... [next 3 mins]

George Dantzig Ah’ that! John von Neumann

[next 60 mins]
.... (convexity)... (fixed point) ... (2-player game) ...
so, there is duality which’d follow by my min-max theorem ...

For any matrix 4, min max xAy = max min xAYy.
X y y X

A refection on the algorithmic journey

= So far: algorithm design triumph Examples

* Divide-and-conquer O(nlogn) Merge sort

* Greedy * O(nlogn) interval scheduling

* Dynamic programming 0(n?) edit distance

e Linear programming (duality) 0(n3>) bipartite matchin

Local search
e Randomization

= New goal: understand what is hard to compute

Computational intractability

= Computability: can you solve it, in principle?
Halting problem is uncomputable [Given program code, will this program

terminate or loop indefinitely?]

Church-Turing Thesis. A function can be computed in any reasonable
model of computation iff. it is computable by a Turing machine.

= Complexity: can you solve it, under resource constraints? ‘

Extended Church-Turing Thesis. A function can be computed efficiently
— in any reasonable model of computation iff. it is efficiently computable by a

Turing machine. .
#~ Quantumsupremacy usingaprogrammable

Disprove ECT?2? & superconductingprocessor

Central ideas in complexity

= Poly-time as “feasible”
e Most natural problems either are easy (e.g., n3) or no poly-time alg. known

= Reduction : relating hardness (A < B = A no harder than B)
= Classity problems by “hardness”

* P = {problems that are easy to answer}
NP = {problems that are easy to verify given hint} [lots of examples, stay tuned!]
* Complete problems:“hardest” in a class

Satisfiability (SAT)

— Short lattice vector
— Graph isomorphism

Sorting

What'd be considered “feasible”?

Q. Which problems will we be able to solve in practice?

A. Those with poly-time algorithms. [von Neumann1953,Godel1956,
Cobham1964,Edmonds1965,Rabin1966]

YES Probably No

Shortest path Longest path
Matching 3D-matching
Min cut Max cut
2-SAT 3-SAT
Planar 4-color Planar 3-color
Bipartite vertex cover Vertex cover

Primality Factoring

Classify problems

Desiderata. Classify problems as those that can be solved in
polynomial-time and those that cannot.

Roughly: C program on
= Provably require exponential time-: machine with infinite memory

* Given a Turing machine, does it HALT in at most k steps!?
* Given a board position in an nXn generalization of chess, can black win!?

®Frustrating news: Huge number of fundamental problems have
defied classification for decades.

* We will show: these problems are “computationally equivalent ” and appear to be
different manifestations of one hard problem.

Tool: polynomial-time reduction

Desiderata’. Suppose we can solve Y in poly-time. What else could
we solve in polynomial time?

= Reduction. Problem X polynomial reduces to Problem Y if
arbitrary instance of X can be solved using:

* Polynomial number of standard computation steps
* & polynomial number of calls to oracle that solves A

o ! M- d d. t. ,d ’t
Notation. X <p coor Y (or X <p Y) ind your direction, don

confuse X <p Y withY <p X

N.B. We pay for time to write down instances to oracle
= instances of Y must be of polynomial size.

What polynomial-time reductions buy us

= Design algorithms. If X <, Y and Y can be solved in poly-time,
then X can also be solved in polynomial time.

= Establish intractability. If X <, Y and X cannot be solved in poly-
time, then Y cannot be solved in polynomial time.

= Establish equivalence. f X <, Yand X <, Y,then X =, Y.

Bottomline. Reductions classify problems acc. to relative difficulty

10

Quiz

= Which of the following poly-time reductions are known?
A. FIND-MAX-FLOW <p FIND-MIN-CUT

B. FIND-MIN-CUT <p FIND-MAX-FLOW
C. BothAand B
D.

Neither A nor B

VALUES VS. ACTUAL FLOW/CUT

11

