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Linear programming
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§ “Standard form” of an LP
• 𝑚 = # constraints, 𝑛 = # decision variables. 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛
• Input: real numbers 𝑐*, 𝑎,*, 𝑏,
• Output: real numbers 𝑥*
• Maximize linear objective function subject to linear inequalities 
• Feasible vs. optimal soln’s.

Max  ∑*012 𝑐*𝑥*
Subject to: // linear constraints 

3
*01

2

𝑎,*𝑥* ≤ 𝑏, 1 ≤ 𝑖 ≤ 𝑚

𝑥* ≥ 0 1 ≤ 𝑗 ≤ 𝑛 𝒄 =

𝑐1
𝑐8
…
𝑐2

𝒙 =

𝑥1
𝑥8
…
𝑥2

𝒃 =

𝑏1
𝑏8
…
𝑏;

𝐴 =
𝑎11 … 𝑎12
𝑎81 … 𝑎82…
𝑎;1

…
…

…
𝑎;2

𝟎 =

0
0
…
0

Max  𝒄>𝒙
Subject to:  𝐴𝒙 ≤ 𝒃

𝒙 ≥ 𝟎
≡



Linear programming: variants
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§ “Slack form” of an LP: linear equalities
Max  ∑*012 𝑐*𝑥*
Subject to: // linear constraints 

3
*01

2

𝑎,*𝑥* ≤ 𝑏, 1 ≤ 𝑖 ≤ 𝑚

𝑥* ≥ 0 1 ≤ 𝑗 ≤ 𝑛

Max  ∑*012 𝑐*𝑥*
Subject to: // linear constraints 

𝑠, = 𝑏, −3
*01

2

𝑎,*𝑥* 1 ≤ 𝑖 ≤ 𝑚

(slack vars) 𝑠, ≥ 0 1 ≤ 𝑖 ≤ 𝑚
𝑥* ≥ 0 1 ≤ 𝑗 ≤ 𝑚

⇒

§Other equivalent variations
• Minimization vs. maximization
• Variables without nonnegativity constraints 
• ≥ vs. ≤



Geometry of linear programming
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Maximize: 𝑥1 + 5𝑥8
Subject to:

0 ≤ 𝑥1 ≤ 12
0 ≤ 𝑥8 ≤ 15
𝑥1 + 𝑥8 ≤ 24

𝑥8

𝑥1

Feasible 
region

1. Feasible
Maximize: 𝑥1 − 𝑥8
Subject to:

2𝑥1 + 𝑥8 ≤ 1
𝑥1 + 𝑥8 ≥ 2
𝑥1, 𝑥8 ≥ 0

2. Infeasible

𝑥8

𝑥1

Maximize: 2𝑥1 + 𝑥8
Subject to:

𝑥1 + 𝑥8 ≥ 1
𝑥1, 𝑥8 ≥ 0

3. Unbounded 

𝑥8

𝑥1



Simplex algorithm: the gist
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Let 𝑣 be any vertex of the feasible region
While there is a neighbor 𝑢 of 𝑣 with better obj. value

𝑣 ← 𝑢

3D-polyhedron defined 
by 7 inequalities

𝑛 variables?
• A linear eq. defines a 

hyperplane in 𝑅2
• A linear ineq. defines a 

halfspace in 𝑅2

“Hill-climbing” along 
vertices in the polygon 

• Each vertex is specified by 𝑛 ineq’s
• 2 vertices are neighbors if share 
𝑛 − 1 defining ineq’s

George Dantzig 1947



Simplex algorithm: the fine prints
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§How to find an initial feasible vertex?
• Reduced to an LP and solved by simplex!

§Which neighbor to move to? (Pivot)
§ Running time? [𝑚 ineq’s, 𝑛 variables]

L Exponential in worst-case! 
𝑚 + 𝑛
𝑛 ≥ 1 + ;

2

2
verticies 

J Super fast in real world [typically terminates after at most 2(𝑚 + 𝑛) pivots]

§Correctness? 
• Convex polyhedron & linear objective function: local max ≡ global max 

Let 𝑣 be any vertex of the feasible region
While there is a neighbor 𝑢 of 𝑣 with better obj. value

𝑣 ← 𝑢



Poly-time algorithms for linear programming
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N.B. Commercial solvers can solve LPs with millions of variables 
and tens of thousands of constraints.

§ Ellipsoid algorithm [Khachiyan1979]

§ Interior point algorithm [Karmarkar1984]
Leonid Khachiyan

Narendra Karmarkar

• A mathematical “Sputnik”
• Not competitive in practice 

https://en.wikipedia.org/wiki/Sputnik_crisis
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How to decide optimality?

𝑥8

𝑥1

5

10

15

5 10 15

20

20

𝑥1 + 𝑥8 = 24

Feasible 
region

Obj.: 𝑥1 + 5𝑥8 = 𝑐

𝑐 = 25
𝑐 = 50

𝑐 = 75

OPT: 𝑐 = 84, 𝑥1 = 9, 𝑥8 = 15

(P) Maximize: 𝑥1 + 5𝑥8
Subject to:

0 ≤ 𝑥1 ≤ 12
0 ≤ 𝑥8 ≤ 15
𝑥1 + 𝑥8 ≤ 24

Certificate: 𝑥1 + 5𝑥8 = 4 ⋅ 𝑥8 + 1 ⋅ (𝑥1 + 𝑥8) ≤ 4 ⋅ 15 + 24 = 84

How to find these (magic) multipliers?



Recall: max-flow & min-cut duality

§Weak duality (certificate of optimality)
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𝑣 𝑓 ≤ 𝑐𝑎𝑝(𝐴, 𝐵)

Value of max flow = capacity of min cut 

§ Strong duality (max-flow min-cut theorem)



Linear programming duality
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(Primal) Max  ∑*012 𝑐*𝑥*
Subject to:

3
*01

2

𝑎,*𝑥* ≤ 𝑏, 1 ≤ 𝑖 ≤ 𝑚

𝑥* ≥ 0 1 ≤ 𝑗 ≤ 𝑛

(Dual) Min ∑,01; 𝑏,𝑦,
Subject to:

3
,01

;

𝑎,*𝑦, ≥ 𝑐* 1 ≤ 𝑗 ≤ 𝑛

𝑦, ≥ 0 1 ≤ 𝑗 ≤ 𝑚

(Primal) Max  𝒄>𝒙
Subject to:

𝐴𝒙 ≤ 𝒃
𝒙 ≥ 𝟎

(Dual) Min  𝒚>𝒃
Subject to:

𝒚>𝑨 ≥ 𝒄>
𝒚 ≥ 𝟎



Fundamental theorem of linear programming
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(Primal) Max  𝒄>𝒙
Subject to:

𝐴𝒙 ≤ 𝒃
𝒙 ≥ 𝟎

(Dual) Min  𝒚>𝒃
Subject to:

𝒚>𝑨 ≥ 𝒄>
𝒚 ≥ 𝟎

§Weak duality. If 𝒙 is a feasible solution for a linear program ⊓, and 
𝒚 is a feasible solution for its dual ⊔, then 𝒄>𝒙 ≤ 𝒚𝑻𝐴𝒙 ≤ 𝒚>𝒃.

§ Strong duality. ⊓ has an optimal solution and 𝒙∗ if and only if its 
dual ⊔ has an optimal solution 𝒚∗ such that 𝒄>𝒙 = 𝒚𝑻𝐴𝒙 = 𝒚>𝒃.

Primal feasible Primal 
OPT

Dual 
OPT Dual feasible

Duality gap is zero



Duality example
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(P) Maximize: 𝑥1 + 5𝑥8
Subject to:

0 ≤ 𝑥1 ≤ 12
0 ≤ 𝑥8 ≤ 15
𝑥1 + 𝑥8 ≤ 24

(D) Minimize: 12𝑦1 + 15𝑦8 + 24𝑦[
Subject to:

𝑦1 + 𝑦[ ≥ 1
𝑦8 + 𝑦[ ≥ 5
𝑦1, 𝑦8, 𝑦[ ≥ 0

Max= 84, 𝑥1 = 9, 𝑥8 = 15 Min= 84, 𝑦1 = 0, 𝑦8 = 4, 𝑦[ = 1

(magic) multipliers



A dialogue between Dantzig & von Neumann
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George Dantzig

Let me show you my exciting finding: simplex algorithm for LP
… … … [next 30 mins]

Get to the point, please!

John von Neumann

OK! Em... To be concise … [next 3 mins]

Ah, that!

[next 60 mins]
…. (convexity)… (fixed point) … (2-player game) … 
so, there is duality which’d follow by my min-max theorem … 

For any matrix 𝐴, min
_
max
b

𝑥𝐴𝑦 = max
b
min
_
𝑥𝐴𝑦.



Exercise: Multicommodity flow

§A flow network with multiple flows (commodities) 
• 𝑐 𝑒 : capacity on each edge 
• 𝐾, = (𝑠,, 𝑡,, 𝑑,): source, sink, and demand of commodity 𝑖. 𝑖 = 1,… , ℓ

§Goal. Decide if it is possible to accommodate all commodities
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Max/min: 0
Subject to:

𝑓,j ≥ 0, ∀𝑒 ∈ 𝐸

3
,01

ℓ

𝑓,j ≤ 𝑐 𝑒 , ∀𝑒 ∈ 𝐸

3
j into p

𝑓,j −3
jout of p

𝑓,j = 0, ∀𝑣 ∈ 𝑉\ 𝑠, 𝑡

3
jout of uv

𝑓,j −3
j into uv

𝑓,j = 𝑑,, 𝑖 = 1,… , ℓ


