W, 10/30/19

Fall'19 CSCE 629

Analysis of Algorithms

Fang Song Texas A&M U

Lecture 23

- Remarks on Ford-Fulkerson
- Intro to linear programming

Credit: based on slides by A. Smith & K. Wayne

For each $e \in E$ $f(e) \leftarrow 0$, $G_f \leftarrow residual graph$ While there is an augmenting path P in G_f $f \leftarrow Augment(f, c, P)$ Update G_f return f

Theorem. Ford-Fulkerson terminates in at most nC iterations. Running time. O(mnC)

Ford-Fulkerson augmenting-path algorithm

Exponential in input size: log C bits (to represent C)

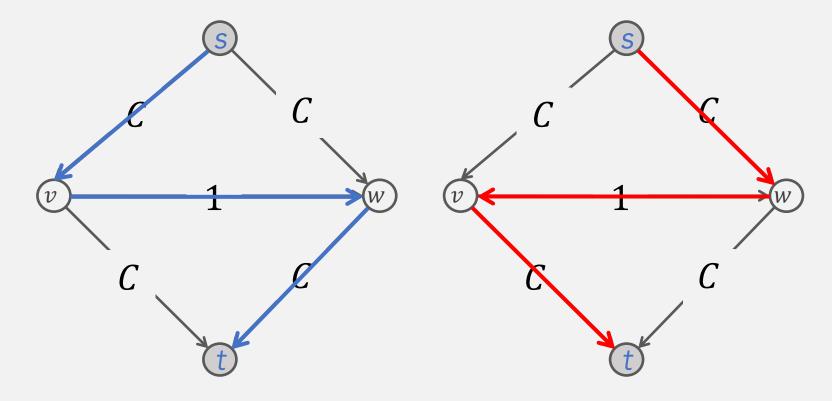
Can it be this bad?

Obs. If max capacity is C, then FF can take $\geq C$ iterations.

Ford-Fulkerson: exponential example

- $s \to v \to w \to t$
- $s \to w \to v \to t$
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \to w \to v \to t$
- •
- $s \rightarrow v \rightarrow w \rightarrow t$
- $s \to w \to v \to t$

Each augmenting path sends only 1 unit of flow (# augmenting paths = 2*C*)



• Use care when selecting augmenting paths

- Some choices lead to exponential algorithms
- Clever choices lead to polynomial algorithms
- If capacities are irrational, algorithm not guaranteed to terminate!

Good choices of augmenting paths [EdmondsKarp'72,Dinitz'70]

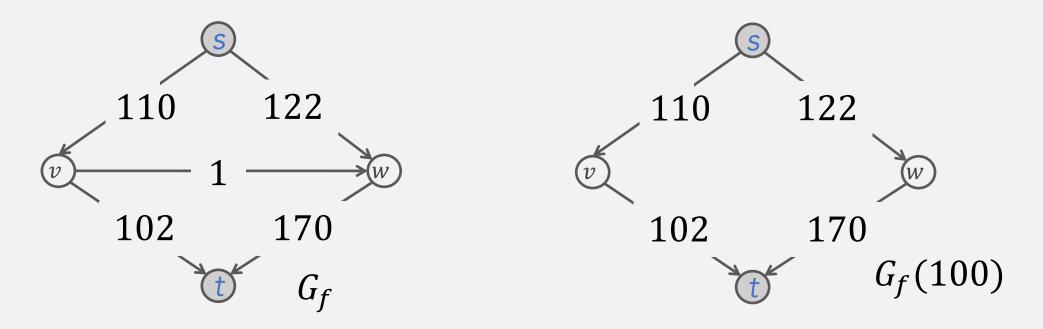
Choosing good augmenting paths

- Max bottleneck capacity [Next]
- Fewest edges (shortest) [CLRS 26.2]

Capacity scaling

Intuition. Choosing path with highest bottleneck capacity increases the flow by max possible amount

- OK to choose sufficiently large bottleneck: scaling parameter Δ
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ



Capacity scaling algorithm Scaling–Max–Flow (G, s, t, c)For each $e \in E f(e) \leftarrow 0$, $G_f \leftarrow residual \ graph$ $\Delta \leftarrow \text{smallest power of } 2 \& \geq C$ While $\Delta \geq 1$ $G_f(\Delta) \leftarrow \Delta$ -residual graph While there is an augmenting path P in $G_f(\Delta)$ $f \leftarrow Augment(f, c, P) // augment flow by \geq \Delta$ Update $G_f(\Delta)$ $\Delta \leftarrow \Delta/2$ **Exercise**. Prove correctness return f

Capacity scaling algorithm: running time Lemmal Outer loop runs $1 + \log C$ times. While $\Delta \geq 1$ $G_f(\Delta) \leftarrow \Delta$ -residual graph **Pf.** Initially $C \leq \Delta \leq 2C$, decreases by a factor of 2 each While there is *P* in $G_f(\Delta)$ iteration $f \leftarrow Augment(f, c, P)$ Lemma2. Let f be the flow at the end of Update $G_f(\Delta)$ a Δ -scaling phase. Then the value of the $\Delta \leftarrow \Delta/2$ maximum flow f^* is at most $v(f) + m\Delta$

Lemma 3. There are at most 2m augmentations per scaling phase.

Pf. Let f be the flow at end of previous scaling

- [Lemma2] $\Rightarrow v(f^*) \le v(f) + m(2\Delta)$
- Each augmentation in $\Delta\text{-scaling}$ increases f by Δ

Theorem. Scaling-max-flow finds a max flow in $O(m^2 \log C)$ time.

Completing the proof

Lemma2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow f^* is at most $v(f) + m\Delta$.

Pf. [Almost identical to proof of max-flow min-cut theorem] Show cut (A, B) w. $cap(A, B) \leq v(f) + m\Delta$ at the end of a Δ -phase.

- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$
- By definition $s \in A \& t \notin A$

$$v(f) = \sum_{e \text{ outof } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\geq \sum_{e \text{ outof } A} (c(e) - \Delta) - \sum_{e \text{ into } A} \Delta$$

$$= \sum_{e \text{ outof } A} c(e) - \sum_{e \text{ outof } A} \Delta - \sum_{e \text{ into } A} \Delta$$

$$= cap(A, B) - m\Delta$$

Original G

A

Augmenting-path algorithms: summary

Year	Method	# augmentations	Running time
1955	Augmenting path	пС	O(mnC)
1972	Fattest path	$m \log mC$	$O(m^2 \log n \log mC)$
1972	Capacity scaling	$m \log C$	$O(m^2 \log C)$
1985	Improved CapS	$m \log C$	$O(mn\log C)$
1970	Shortest path	mn	$O(m^2n)$
1970	level graph	mn	$O(mn^2)$
1983	dynamic trees	mn	$O(mn\log n)$

and the show goes on ...

Year	Method	Worst case	Discovered by
1951	Simplex	$O(mn^2C)$	Dantzig
1955	Augmenting path	$O(mn^2W)$	Ford-Fulkerson
• • •			
1988	Push-relabel	$O(mn\log(n^2/m))$	Goldberg-Tarjan
• • •			
2013	Compact networks	O(mn)	Orlin
2016	Electrical flows	$\tilde{O}(m^{10/7}C^{1/7})$	Madry
20XX			

To keep it simple, cite below when you invoke a max-flow subroutine in hw/exam Maximum flows can be computed in O(mn) time

Another formulation of max-flow problem

Recall. An s-t flow is a function $f: E \to \mathbb{R}$ satisfying

- [Capacity] $\forall e \in E: 0 \le f(e) \le c(e)$
- [Conservation] $\forall v \in V \setminus \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

The value of a flow f is $v(f) \coloneqq \sum_{e \text{ out of } s} f(e)$

Max-Flow ProblemReal-value variables $\vec{f} = \{f_e : e \in E\}$ Maximize: $v(\vec{f})$ Subject to: $0 \le f_e \le c(e), \forall e \in E$ $\sum_{e \text{ into } v} f_e - \sum_{e \text{ out of } v} f_e = 0, \forall v \in V \setminus \{s, t\}$ Linear constraints: no $x^2, xy, \sin(x), \dots$

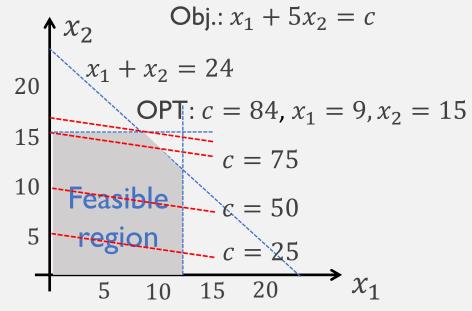
Input. HW from two courses (xxx & 629) due in one day

- Every hour you spend, you earn 1pts on xxx or 5pts on 629
- Your brain will explode if you work more than 12hrs on xxx or 15hrs on 629

Grade maximization

- Of course, there are only 24 hrs in a day
- Goal. Maximize the total pts you can earn

```
Grade-Maximization
Variables: x_1 (xxx hrs); x_2 (629 hrs)
Maximize: x_1 + 5x_2
Subject to: // linear constraints
0 \le x_1 \le 12
0 \le x_2 \le 15
x_1 + x_2 \le 24
```



Linear programming. Optimize a linear objective function subject to linear inequalities.

Linear programming

- Formal definition and representations
- Duality
- Algorithms: simplex, ellipsoid, interior point

Why significant?

- Design poly-time algorithms & approximation algorithms
- Wide applications: math, economics, business, transportation, energy, telecommunications, and manufacturing

Ranked among most important scientific advances of 20th century

Happy Halloween! & Enjoy the treats!

Ozzy - Mr Crowleyhttps://www.youtube.com/watch?v=vDVLMS_Yhe4葬尸湖 - 弈秋https://www.youtube.com/watch?v=Hb2OgPoZGIYUaral - Lamenthttps://www.youtube.com/watch?v=azZz8Oyz-O0Saturnus - All alonehttps://www.youtube.com/watch?v=-FID_X6hfmcForest of Shadows - Eternal Autumnhttps://www.youtube.com/watch?v=usGGX6ZqQv0