
Fall’19 CSCE 629

Analysis of
Algorithms

W, 10/30/19

Lecture 23

• Remarks on Ford-Fulkerson

• Intro to linear programming

Credit: based on slides by A. Smith & K. Wayne

Fang Song
Texas A&M U

Ford-Fulkerson augmenting-path algorithm

1

!"#$−!&'()#*"+(-, /, 0, 1)
For each 3 ∈ 5 6 3 ← 0, -9 ← :3/;<=>? @:>Aℎ
While there is an augmenting path C in -9
6 ← D=@E3F0(6, 1, C)
Update -9

return 6

Theorem. Ford-Fulkerson terminates in at most FG iterations.
Running time. H EFG

Exponential in input size:
log G bits (to represent G)

Can it be this bad?

s

! "

t

#

1

#

Ford-Fulkerson: exponential example

2

Obs. If max capacity is #, then FF can take ≥ # iterations.

s

! "

t

#

1

#

• & → ! → " → (
• & → " → ! → (
• & → ! → " → (
• & → " → ! → (
• …
• & → ! → " → (
• & → " → ! → (
Each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2#)

Choosing good augmenting paths

§Use care when selecting augmenting paths
• Some choices lead to exponential algorithms
• Clever choices lead to polynomial algorithms
• If capacities are irrational, algorithm not guaranteed to terminate!

3

§Good choices of augmenting paths [EdmondsKarp’72,Dinitz’70]
• Max bottleneck capacity [Next]
• Fewest edges (shortest) [CLRS 26.2]

Capacity scaling

Intuition. Choosing path with highest bottleneck capacity
increases the flow by max possible amount
• OK to choose sufficiently large bottleneck: scaling parameter Δ
• Let "# Δ be the subgraph of the residual graph consisting of only arcs with

capacity at least Δ

4

s

$ %

t

110 122
1

102 170
"#

s

$ %

t

110 122

102 170
"#(100)

Capacity scaling algorithm

5

!"#$%&'−Max−Flow (1, 3, 4, 5)
For each 7 ∈ 9 : 7 ← 0,
1= ← >73?@ABC D>BEℎ
Δ ← smallest power of 2 & ≥ I

While Δ ≥ 1
1=(Δ) ← Δ−residual graph
While there is an augmenting path T in 1=(Δ)

: ← UADV7W4(:, 5, T) // augment flow by ≥ Δ
Update 1=(Δ)

Δ ← Δ/2
return : Exercise. Prove correctness

Capacity scaling algorithm: running time

6

While Δ ≥ 1
$%(Δ) ← Δ−residual graph
While there is 5 in $%(Δ)

6 ← 789:;<=(6, ?, 5)
Update $%(Δ)

Δ ← Δ/2
…

Lemma1 Outer loop runs 1 + log E times.
Pf. Initially E ≤ Δ ≤ 2E, decreases by a factor of 2 each
iteration

Lemma2. Let 6 be the flow at the end of
a Δ-scaling phase. Then the value of the
maximum flow 6∗ is at most H(6) + :Δ.

Lemma3. There are at most 2: augmentations per scaling phase.
Pf. Let 6 be the flow at end of previous scaling
• [Lemma2]⇒ H 6∗ ≤ H 6 +:(2Δ)
• Each augmentation in Δ-scaling increases 6 by Δ

Theorem. Scaling-max-flow finds a max flow in J(:K log E) time.

!

Completing the proof

7

Lemma2. Let " be the flow at the end of a Δ-scaling phase. Then
the value of the maximum flow "∗ is at most %(") +)Δ.

• Choose ! to be the set of nodes reachable from * in +,(Δ)
• By definition * ∈ ! & . ∉ !

Pf. [Almost identical to proof of max-flow min-cut theorem]
Show cut (!, 1) w. 234 !, 1 ≤ % " +)Δ at the end of a Δ−phase.

% " = ∑9 outof > " ? −∑9 @ABC > " ?
≥ ∑9 outof >(2 ? − Δ) − ∑9 @ABC > Δ
= ∑9 outof > 2 ? − ∑9 CEBCF > Δ − ∑9 @ABC > Δ
= 234 !, 1 −)G s

t
Original +

Augmenting-path algorithms: summary

8

Year Method # augmentations Running time
1955 Augmenting path !" #(%!")
1972 Fattest path % log%" #(%* log ! log%")
1972 Capacity scaling % log " #(%* log ")
1985 Improved CapS % log " #(%! log ")
1970 Shortest path %! #(%*!)
1970 level graph %! #(%!*)
1983 dynamic trees %! #(%! log !)

and the show goes on …

9

Year Method Worst case Discovered by
1951 Simplex !(#$%&) Dantzig
1955 Augmenting path !(#$%() Ford-Fulkerson

…
1988 Push-relabel !(#$ log($%/#)) Goldberg-Tarjan

…
2013 Compact networks !(#$) Orlin
2016 Electrical flows -!(#.//0&./0) Madry
20XX

Maximum flows can be computed in !(#$) time
To keep it simple, cite below when you invoke a max-flow subroutine in hw/exam

Another formulation of max-flow problem

Recall. An !−# flow is a function $: & → ℝ satisfying
• [Capacity] ∀* ∈ &: 0 ≤ $ * ≤ . *

• [Conservation] ∀/ ∈ 0\{!, #}: ∑
6 into ; $ * = ∑

6 out of ; $ *

The value of a flow $ is / $ ≔ ∑
6 out of @ $(*)

10

Max−Flow IJKLMNO

Real-value variables $⃗ = {$6: * ∈ &}

Maximize: /($⃗)
Subject to:

0 ≤ $6 ≤ . * , ∀* ∈ &
∑
6 into ; $6 − ∑6 out of ; $6 = 0, ∀/ ∈ 0\{!, #}

Linear constraints: no QR, QS, sin Q ,…

Grade maximization

Input. HW from two courses (xxx & 629) due in one day
• Every hour you spend, you earn 1pts on xxx or 5pts on 629
• Your brain will explode if you work more than 12hrs on xxx or 15hrs on 629
• Of course, there are only 24 hrs in a day

Goal. Maximize the total pts you can earn

11

Grade−Maximization
Variables: 23 (xxx hrs); 24 (629 hrs)
Maximize: 23 + 524
Subject to: // linear constraints

0 ≤ 23 ≤ 12
0 ≤ 24 ≤ 15
23 + 24 ≤ 24

24

23
5
10
15

5 10 15

20

20

23 + 24 = 24

Feasible
region

Obj.: 23 + 524 = :

: = 25
: = 50
: = 75

OPT: : = 84, 23 = 9, 24 = 15

Linear programming

Linear programming. Optimize a linear objective function subject
to linear inequalities.
• Formal definition and representations
• Duality
• Algorithms: simplex, ellipsoid, interior point

12

Why significant?
• Design poly-time algorithms & approximation algorithms
• Wide applications: math, economics, business, transportation, energy,

telecommunications, and manufacturing

Ranked among most important scientific advances of 20th century

13

Happy Halloween!
&

Enjoy the treats!
https://www.youtube.com/watch?v=vDVLMS_Yhe4

https://www.youtube.com/watch?v=Hb2OgPoZG1Y

https://www.youtube.com/watch?v=azZz8Oyz-O0Uaral - Lament

Ozzy - Mr Crowley

https://www.youtube.com/watch?v=-F1D_X6hfmcSaturnus - All alone
https://www.youtube.com/watch?v=usGGX6ZqQv0Forest of Shadows - Eternal Autumn

��� –��

https://www.youtube.com/watch?v=vDVLMS_Yhe4
https://www.youtube.com/watch?v=Hb2OgPoZG1Y
https://www.youtube.com/watch?v=azZz8Oyz-O0
https://www.youtube.com/watch?v=-F1D_X6hfmc
https://www.youtube.com/watch?v=usGGX6ZqQv0

