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Ford-Fulkerson augmenting-path algorithm

Ford—Fulkerson(G,s,t,c)
Foreache € E f(e) « 0, Gf « residual graph
While there is an augmenting path P in G
f < Augment(f,c, P)
Update Gr
return f

Theorem. Ford-Fulkerson terminates in at most nC iterations.

Running time. O0(mn(C) -

Exponential in input size:
log C bits (to represent ()

Can it be this bad?



Ford-Fulkerson: exponential example
Obs. If max capacity is C, then FF can take > C iterations.

*SoUV-oOWwW-TL
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Each augmenting path
sends only 1 unit of flow
(# augmenting paths = 2()



Choosing good augmenting paths

= Use care when selecting augmenting paths
* Some choices lead to exponential algorithms
* Clever choices lead to polynomial algorithms
* If capacities are irrational, algorithm not guaranteed to terminate!

* Good choices of augmenting paths [EdmondsKarp’72,Dinitz'70]

* Max bottleneck capacity [Next]
* Fewest edges (shortest) [CLRS 26.2]



Capacity scaling

Intuition. Choosing path with highest bottleneck capacity
increases the flow by max possible amount
* OK to choose sufficiently large bottleneck: scaling parameter A

* Let G;(A) be the subgraph of the residual graph consisting of only arcs with
capacity at least A

A A

110 122 110 122

C—1—» o

102 170 102 170




Capacity scaling algorithm

Scaling—Max—Flow (G, s, t, ¢)
Foreache € E f(e) « 0,
Gf « residual graph
A < smallest power of 2 & > C

While A =1
Gf(A) « A—residual graph
While there is an augmenting path P in G¢(A)
[ < Augment(f,c, P) // augment flow by = A
Update Gf(4)
Ae—AJ2
return f Exercise. Prove correctness



Capacity scaling algorithm: running time

While A > 1 Lemma1 Outer loop runs 1 + log C times.

Gr(A) < A—residual graph | ' Pf. Initially C < A < 2C, decreases by a factor of 2 each
While there is P in Gf(4) | iteration =

Unaate, ?e&t)(f “F) [Lemma2. Let f be the flow at the end of
Ae—A/2 ! ‘a A-scaling phase. Then the value of the |

‘maximum flow f* is at most v(f) + mA. |

Lemma3. There are at most 2Zm augmentations per scaling phase.

Pf. Let f be the flow at end of previous scaling
e [Lemma2] = v(f*) < v(f) + m(24)
* Each augmentation in A-scaling increases f by A

Theorem. Scaling-max-flow finds a max flow in 0(m? log C) time.



Completing the proof

LemmaZ2. Let f be the flow at the end of a A-scaling phase. Then
the value of the maximum flow f* is at most v(f) + mA.

Pf. [Almost identical to proof of max-flow min-cut theorem]
Show cut (4, B) w. cap(4, B) < v(f) + mA at the end of a A—phase.

* Choose A to be the set of nodes reachable from s in G¢(A)
* By definitions € A &t € A

v(f) = Ze OutOfAf(e) — 2eintoa f(€)
= Ze OutOfA(C(e) —A) — Xeintoal
— Ze outof 4 c(e) = Xeoutofad = Leintoad
= cap(4,B) —mA

Original G

A




Augmenting-path algorithms: summary

Neor | Ntod L4 sugmertair:

1955 Augmenting path O (mnC)
1972 Fattest path mlong 0(m?lognlogmcC)
1972 Capacity scaling mlogC 0(m?log C)
1985 Improved Cap$S mlog C O(mnlogC)
1970  Shortest path mn 0(m?n)
1970 level graph mn 0 (mn?)

1983  dynamic trees mn O(mnlogn)



and the show goes on ...

Near | Method | Worstcase | _ Discovered by

1951 Simplex 0(mn?C Dantzig
1955 Augmenting path 0 (mn? ) Ford-Fulkerson

1988 Push-relabel 0 (mnlog(n?/m)) Goldberg-Tarjan

2013 Compact networks Orlin

2016  Electrical flows 0 (m10/7¢c1/7y Madry
20XX

To keep it simple, cite below when you invoke a max-flow subroutine in hw/exam

Maximum flows can be computed in O(mn) time



Another formulation of max-flow problem

Recall. An s—t flow is a function f: E — R satisfying
o [Capacity] Ve € E: 0 < f(e) < c(e)
* [Conservation] Vv € V\{s,t}: X, intof(€) =2, out of »f (&)

The value of a flow fis v(f) =X _ .+ or. f(€)

Max—Flow Problem
Real-value variables f = {f.:e € E}
Maximize: v(f )
Subject to:

0<f,<c(e), VeeE

2eintovfe ~ Leout of pfe =0 VV E V\Y{S\'ﬁ\

Linear constraints: no x%, xy, sin(x), ...
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Grade maximization

Input. HW from two courses (xxx & 629) due in one day

* Every hour you spend, you earn 1pts on xxx or 5pts on 629
* Your brain will explode if you work more than 12hrs on xxx or 15hrs on 629

* Of course, there are only 24 hrs in a day

Goal. Maximize the total pts you can earn
Obj.: x; + 5x, =

Grade—Maximization 1 X2

Variables: x; (xxx hrs); x, (629 hrs) 2o g+ xp =24
Maximize: x; +5x, | . OPT:c =84,x; =9,x, =15
Subject to: // linear constraints D

8 _ X1 i 1; 10 Feasible_. ¢ = 50

= Aol = 5 [-region | \‘_‘\\25
X1 i X9 < 24 N €= S
5 10 15 20 X1




Linear programming

Linear programming. Optimize a linear objective function subject
to linear inequalities.

* Formal definition and representations

* Duality

* Algorithms: simplex, ellipsoid, interior point

Why significant?
* Design poly-time algorithms & approximation algorithms

* Wide applications: math, economics, business, transportation, energy,
telecommunications, and manufacturing

Ranked among most important scientific advances of 20th century
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Ozzy - Mr Crowley
3708 - ok
Uaral - Lament
Saturnus - All alone

Forest of Shadows - Eternal Autumn

https://www.youtube.com/watch?v=vDVLMS Yhe4

https://www.youtube.com/watch?v=Hb2OgPoZG 1Y

https://www.youtube.com/watch?v=az/Zz80yz-O0

https://www.youtube.com/watch?v=-FID_Xéhfmc

https://www.youtube.com/watch?v=usGGX6ZgQv0
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