F, 10/25/19

Fall'19 CSCE 629

Analysis of Algorithms

Lecture 22

• Bipartite matching

Guest lecture by Prof. Klappenecker

Credit: based on slides by A. Smith & K. Wayne

Ford-Fulkerson. Find max s-t flow & min s-t cut in time O(mnC)

Recap: max-flow & min-cut

- All capacities are integers $\leq C$
- Will see how to remove this
- Duality. max flow value = min cut capacity

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value f(e) is an integer.

• Today. Applications when C = 1 [N.B. running time O(mn)]

Matching

Def. Given an undirected graph G = (V, E). A subset of edges $M \subseteq E$ is a matching if each node appears in at most one edge in M.

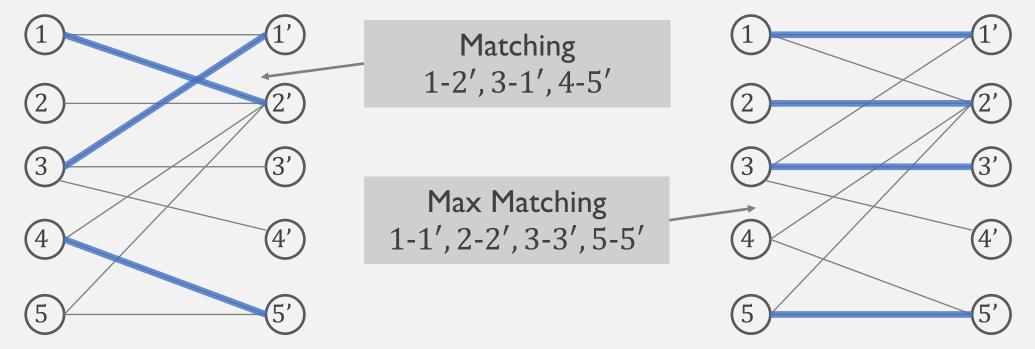
Max matching. Find a matching of max cardinality.

• i.e., adding any edge will make it no longer a matching

Bipartite Matching

Bipartite graph. A graph G is bipartite if the nodes V can be partitioned into two subsets L and R such that every edge connects a node in L with a node in R.

(Max) Bipartite matching. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.



Informal. Problem A reduces to problem B if there is a simple algorithm for A that uses an algorithm for B as a subroutine.

Common scenario [a.k.a. Karp reduction]

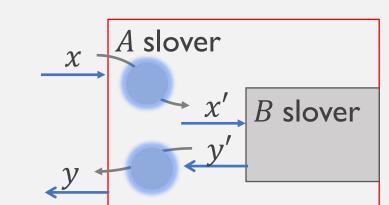
- Given instance x of problem A.
- Convert x to an instance x' and solve it.
- Use the solution to x' to build a solution for x.

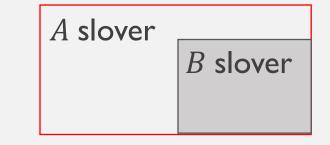
Useful skill

• Quickly identifying problems where existing solutions may be applied

Reductions

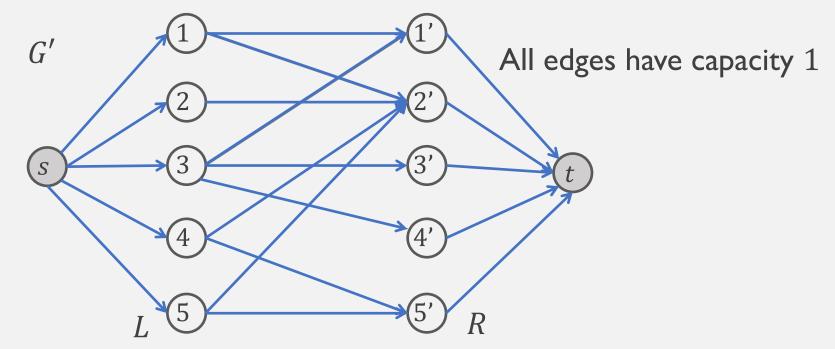
• Good programmers do this all the time [don't reinvent wheels]





Reduction to max flow

- Create directed graph $G' = (L \cup R \cup \{s, t\}, E')$
- Direct all edges from L to R, and assign capacity 1
- Add source s, and capacity 1 edges to every node in L
- Add sink t, and capacity 1 edges from each node in R to t.



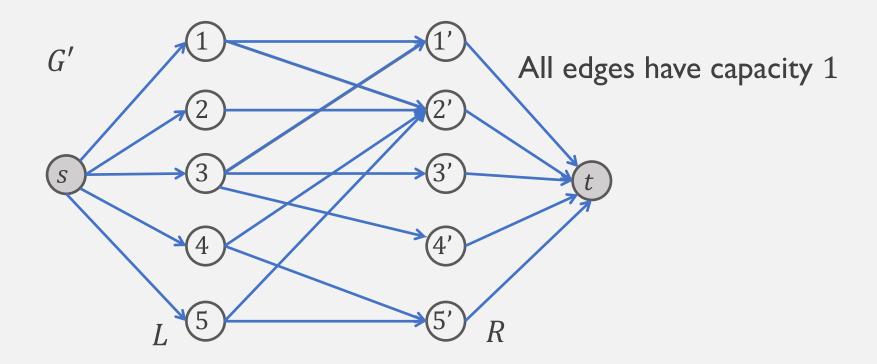
Reducing bipartite matching to max flow

Bipartite matching: proof of correctness

Theorem. Max cardinality matching in G = value of max flow in G'

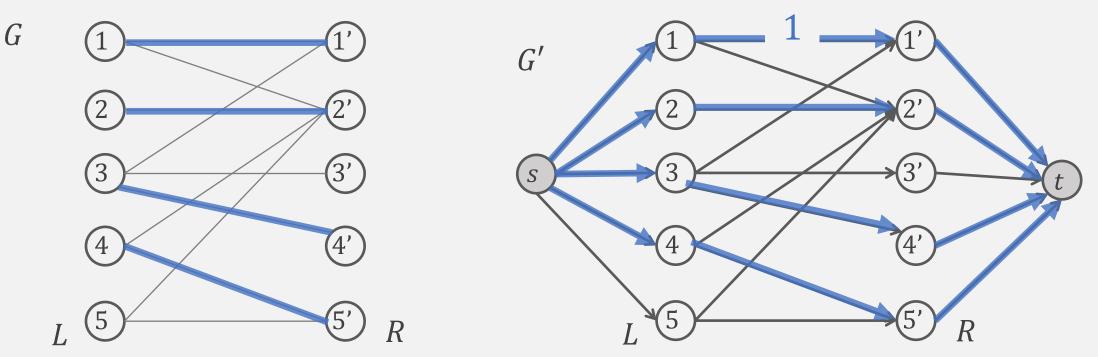
Proof. We show two claims

- Max matching in $G \leq \max$ flow in G'
- Max matching in $G \ge \max$ flow in G'



Proof. (Part 1) Max matching in $G \leq \max$ flow in G'

- Given max matching M of cardinality k
- Consider flow f that send 1 unit along each of k paths
- f is a flow of value k



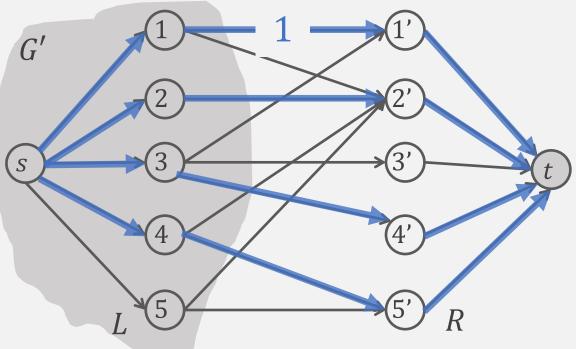
Bipartite matching: proof of correctness

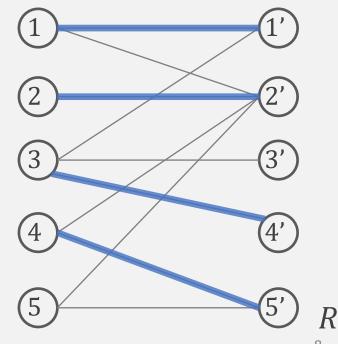
Proof. (Part 2) Max matching in $G \ge \max$ flow in G'

- Given max flow f in G' of integer value k [Exists by Integrality theorem]
- All capacities are $1 \Rightarrow f(e)$ is 0 or 1. Let M = edges from L to R with f(e) = 1

Bipartite matching: proof of correctness

 \Rightarrow *M* is a matching (each node in *L* and *R* participate in at most one edge) & *M* has size *k* (consider cut (*s* \cup *L*, *R* \cup *t*)).





Def. A matching $M \subseteq E$ is perfect if each node appears in exactly one edge in M.

Perfect matching

When does a bipartite graph have a perfect matching?

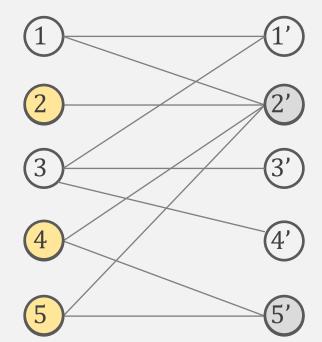
Structure of bipartite graphs with perfect matchings.

- Clearly we must have |L| = |R|
- What other conditions are necessary?
- What conditions are sufficient?

Perfect matching

Notation. Let S be a subset of nodes. Let N(S) be the set of nodes adjacent to nodes in S.

- Observation. If a bipartite graph $G = (L \cup R, E)$, has a perfect matching, then $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.
- Pf. Each node in S has to be matched to a different node in N(S).



No perfect matching $S = \{2,4,5\}, N(S) = \{2',5'\}$

Actually, this is also a sufficient condition ...

Marriage Theorem [Frobenius1917, Hall1935]

Let $G = (L \cup R, E)$ be a bipartite graph with |L| = |R|. Then G has a perfect matching if and only if $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.

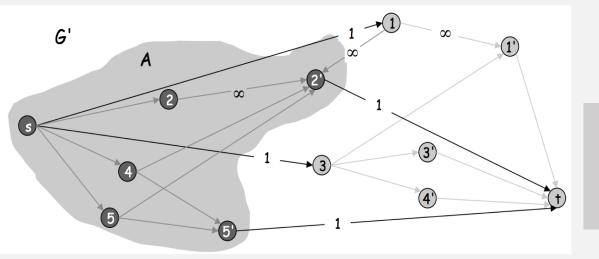
Marriage theorem

Pf. \Rightarrow ("only if") This is the previous observation.

Marriage theorem: proof

Pf. \leftarrow ("if") Suppose for contradiction $|N(S)| \ge |S|$ for all subsets $S \subseteq L$, but G does not contain a perfect matching.

- Formulate as a max flow problem in G' with ∞ capacities on edges from L to R.
- Let (A, B) be min cut in G'. By max-flow min-cut, cap(A, B) < |L|
- Let $L_A = L \cap A, L_B = L \cap B, R_A = R \cap A$. Then $cap(A, B) = |L_B| + |R_A|$. $\Rightarrow |R_A| = cap(A, B) - |L_B| < |L| - |L_B| = |L_A|$
- Since min cut cannot use ∞ edges, $N(L_A) \subseteq R_A$. $|N(L_A)| \leq |R_A| < |L_A| !!!$



$$L = \{1 \dots 5\}, R = \{1' \dots 5'\}$$
$$L_A = \{2,4,5\}, L_B = \{1,3\}, R_A = \{2',5'\}$$
$$N(L_A) = \{2',5'\}$$