Fall'19 CSCE 629

Analysis of Algorithms

Fang Song
Texas A&M U

Lecture 20

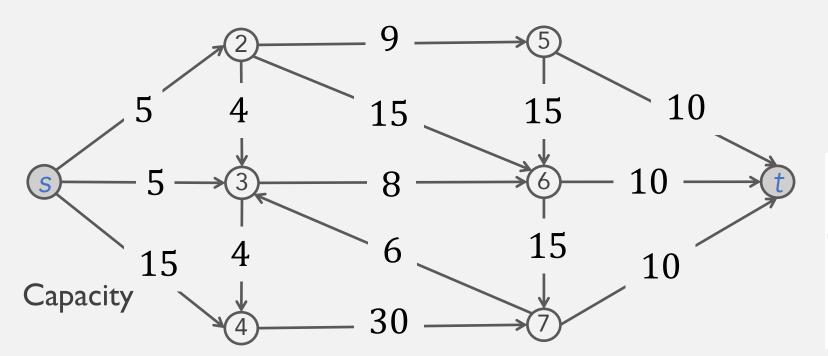
Max-flow min-cut theorem

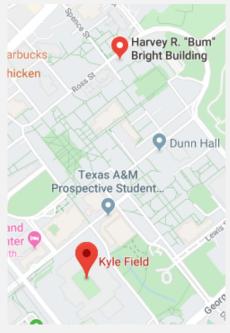
Credit: based on slides by A. Smith & K. Wayne

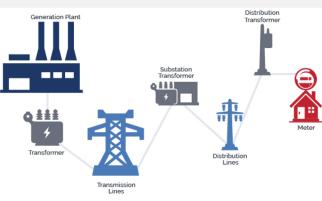
Recap: Flow network

Abstraction for material flowing through the edges

- G = (V, E) directed graph, no parallel edges
- Two distinguished nodes: s = source, t = sink
- $\forall e \in E, c(e)$: capacity of edge e





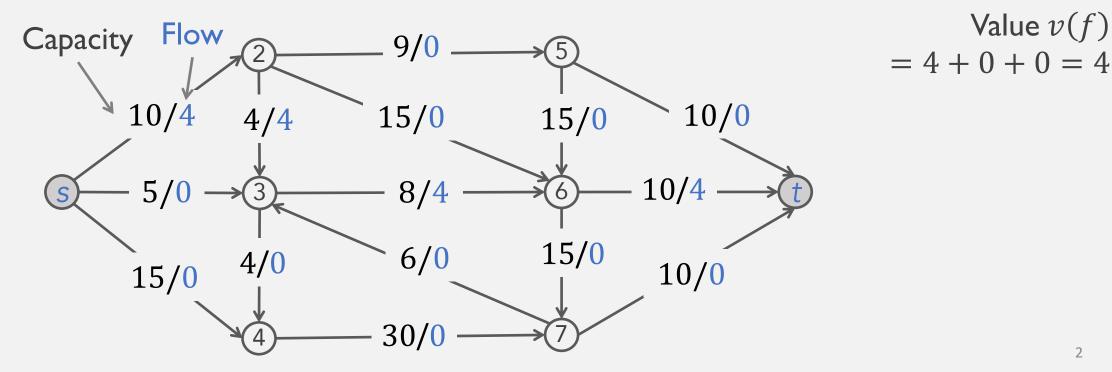


Flows

Def. An s-t flow is a function $f: E \to \mathbb{R}$ satisfying

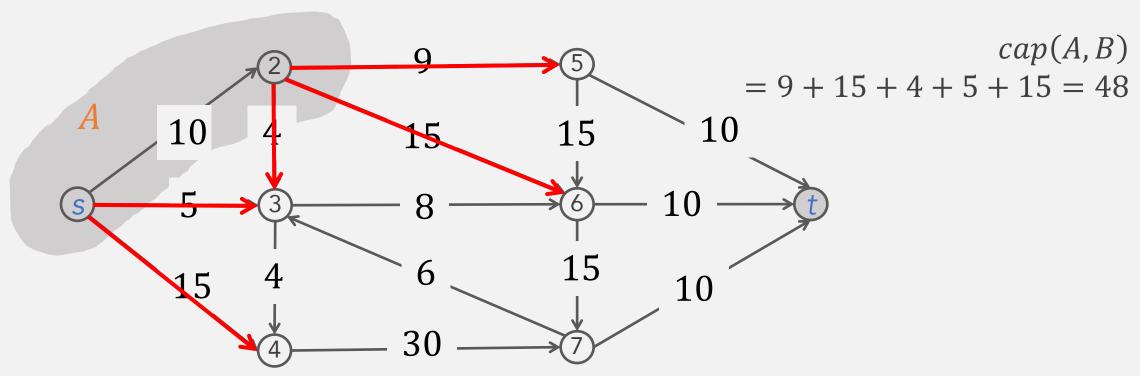
- [Capacity] $\forall e \in E : 0 \le f(e) \le c(e)$
- [Conservation] $\forall v \in V \setminus \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is $v(f) := \sum_{e \text{ out of } s} f(e)$



Cuts

- Recall: a cut is a subset of nodes
- Def. s-t cut: $(A, B := V \setminus A)$ partition of V with $s \in A \& t \in B$
- Def. Capacity of cut (A, B): $cap(A, B) = \sum_{e \text{ out of } A} c(e)$



Flow value lemma

Flow-value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then the net flow across the cut is equal to the amount leaving s (i.e., value of flow). $\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$

v(f) = 24Net flow 9/6 = 10 - 4 + 8 - 0 + 10 = 2410/6 15/0 15/0 10/8 8/8 5/3 15/0 6/1 15/11 30/11

Weak duality

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

$$v(f) \le cap(A, B)$$

Proof.

$$v(f) = \sum_{e \text{ outof } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\leq \sum_{e \text{ outof } A} f(e)$$

$$\leq \sum_{e \text{ outof } A} c(e)$$

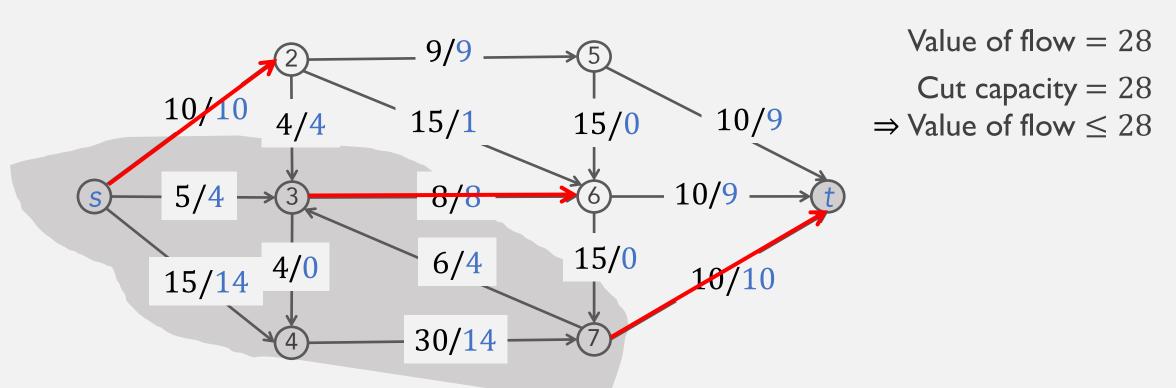
= cap(A, B)

When does it become **equality**?

- No flow coming into A
- Flows saturate outgoing edges

Weak duality ⇒ certificate of optimality

Corollary (of weak duality). Let f be any flow, and (A, B) be any s-t cut. If v(f) = cap(A, B), then f is a max flow, and (A, B) a min cut.



Max-flow min-cut theorem

Theorem. Value of max flow = capacity of min cut

Strong duality

MAXIMAL FLOW THROUGH A NETWORK

L. R. FORD, JR. AND D. R. FULKERSON

1956

ON THE MAX FLOW MIN CUT THEOREM OF NETWORKS

G. B. Dantzig

D. R. Fulkerson

P-826 \$

https://apps.dtic.mil/dtic/tr/fulltext/u2/605014.pdf

April 15, 1955

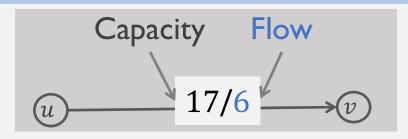
IRE TRANSACTIONS ON INFORMATION THEORY

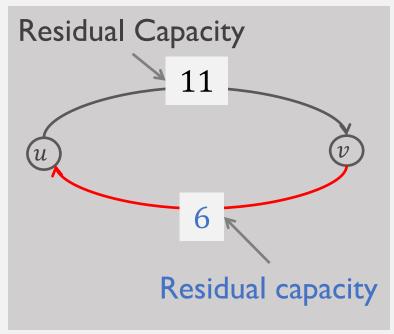
A Note on the Maximum Flow Through a Network*

P. ELIAS†, A. FEINSTEIN‡, AND C. E. SHANNON§

Residue graph

- Original edge: $e = (u, v) \in E$
 - Flow f(e), capacity c(e)
- Residual edge: "Undo" flow sent
 - e = (u, v) and $e^R = (v, u)$
 - Residual capacity $c_f(e) = \begin{cases} c(e) f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$
- Residual graph $G_f = (V, E_f)$
 - Residual edges with positive residual capacity
 - $E_f = \{e: f(e) < c(e)\} \cup \{e^R: f(e) > 0\}$

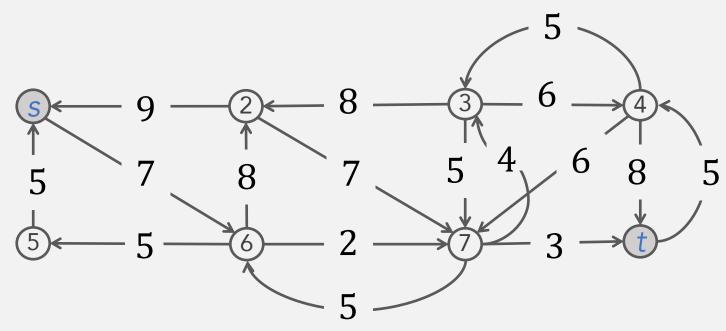




Augmenting path

- An augmenting path is a simple $s \sim t$ path in residual graph G_f .
- The bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P.

Which is the augmenting path of highest bottleneck capacity?



Augmenting path theorem

Theorem. f is a max flow iff. no augmenting paths ($s \sim t$) in G_f .

"Algorithmic" max-flow min-cut thm

Proof. We show that the following are equivalent $(a \Rightarrow b \Rightarrow c \Rightarrow a)$

- a. f is a max flow \leftarrow Corollary of weak duality.
 - b. There is no augmenting path (with respect to f) $\bigcap [(A,B) \text{ also a min-cut}]$
- c. There exists a cut (A, B) such that cap(A, B) = v(f)

Max-flow min-cut theorem
Value of max flow = capacity of min cut

Augmenting path theorem: proof

- a. f is a max flow
- b. There is no augmenting path (with respect to f)
- c. There exists a cut (A, B) such that cap(A, B) = v(f)
- a \Rightarrow b. We show contrapositive $\neg b \Rightarrow \neg a$

Lemma (augmented flow). Let P be an augmenting path with respect to f. Then f' below is a feasible flow with v(f') > v(f).

 $\delta \leftarrow \text{bottleneck capacity of augmenting path P}$ For each $e \in P$, $f'(e) = \begin{cases} f(e) + \delta, \ e \in E \\ f(e) - \delta, e^R \in E \end{cases}$

Pf

- Exercise. Verify f' is a feasible flow (i.e., capacity and conservation hold).
- $v(f') = v(f) + \delta > v(f)$ because only first edge in P leaves s.

Augmenting path theorem

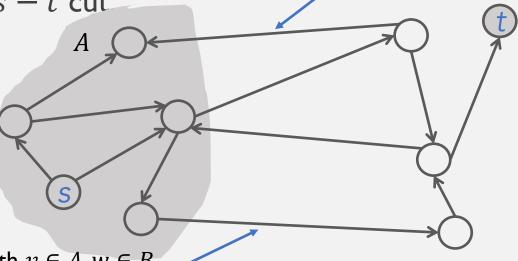
- a. f is a max flow
- b. There is no augmenting path (with respect to f)
- c. There exists a cut (A, B) such that cap(A, B) = v(f)
- b \Rightarrow c. Assuming G_f has no augmenting path
 - Let A be the set of nodes reachable from s in G_f .
 - Clearly $s \in A$, and $t \notin A$. $(A, B = S \setminus A)$ an s t cut
 - Obs. On edges of G_f go from A to B.

$$v(f) = \sum_{e \text{ outof } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ outof } A} c(e) - 0$$

$$= cap(A, B)$$
Original G

edge e = (v, w) with $v \in B, w \in A$ must have f(e) = 0



edge e = (v, w) with $v \in A, w \in B$ must have f(e) = c(e)