M, 10/14/19

--

Fall’'19 CSCE 629 Lecture 18

Analysis Of « An excursion to data structures
. ~+ Amortized analysis
Algorithms

__

--

Fang Song
Texas A&M U

__

Credit: based on slides by K.Wayne

Recall: priority queue for Dijkstra’s algorithm

PriorityQueue Q: set of n elements w. associated key values (alarm)

* Change-key(X). change key value of an element
* Delete-min. Return the element with smallest key, and remove it.

 Can be done in O(logn) time (by a heap)

Dijkstra(G, s) // initialize d(s) = 0, others d(u) = o Dijkstra
Make Q from V using d(-) as key value O((m + n)logn)
While Q not empty } 0 (nlogn) Further improvement

u < Delete-min(Q) 5 possible by Fibonacci

// pick node with shortest distance to s heap [More to come]

For all edges (u,v) € E

If d(w) > d(w) + i, v) 0(mlogn)
d(v) « d(u) + l(u,v) and Change-key(v)

N.B. BFS uses ordinary Queue. Dijkstra = BFS+Priority Queue

Recall: disjoint-set for Kruskal’s algorithm

= Disjoint-set (aka Union-Find) data structure T
* Make—Set(x): create a singleton set containing x

* Find—Set(x): return the “name” of the unique set
containing x

* Union(x, y): merge the sets containing x and y
respectively

| Linkedlist

Find (worst-case) 0(1) O(logn)
Union (worst-case) O(n) O(logn)
Amortized analysis: k unions and 0(klogk) O(klogk)

k finds, starting from singleton

Today

A taste of data structures & amortized analysis

Implementing Priority Queue

PriorityQueue: set of n elements w. associated key values
* Change-key. change key value of an element
* Delete-min. Return the element with smallest key, and remove it.
* Insert/Delete
* Goal: O(logn) time worst-case

= (Sorted) Array? = (Sorted) Linked list?
© Change-key: 0(1)? © Delete-min: 0(1)
® Insert: Q(n) ® Insert: Q(n)
35/ 6}9[1012 35— 6— 9—10:

N\

Binary heaps

= Binary complete tree. Perfectly balanced, except for bottom level
* Heap-ordered tree. For every node, key(child) = key(parent)
= Binary heap. Heap-ordered complete binary tree

https://photos.com/featured/doum-palm-hyphaene-
coriacea-and-james-warwick.html?product=poster

5

https://photos.com/featured/doum-palm-hyphaene-coriacea-and-james-warwick.html?product=poster

Representing a binary heap

= Array representation. H[1,2, ..., n] 1
* Parent of node at k is at |k /2]
e Children of node at k is at 2k and 2k + 1

l 4
-7 -7

Binary heap: Insert,

" Insert. Add new node at end; repeatedly exchange new node
with its parent until heap order is restored.

Time: O(logn)

Add key to heap
(violates heap order)

@ @@ @ Swim up

Binary heap: Delete-min
= Extract Min at root; upgrade last node to root and “heapity” it!

Sink down

to root (violates
heap order)

Exchange last node Time: O(logn)
G

Implementing priority queue

Linked list | Binary heap | Fibonacci Heap*

Insert O(n) O (logn) 0(1)
Delete- 0(1) O (logn) O (logn)
min
Change- O(n) O (logn) 0(1)

key

Disjoint-set data structure

= Goal. Three operations on a collection of disjoint sets.
* Make—Set(x): create a singleton set containing x
* Find — Set(x): return “name” of the unique set containing x
* Union(x, y): merge the sets containing x and y respectively

» Performance parameters
* k=number of calls to the three op’s
* n=number of elements

10

Simple implementation by an array

= Array Component[x]: name of the set containing x
 FIND(X): 0(1)
* UNION(X, ¥): O(n) update all nodes in sets containing x and y

= Some improvement
* Maintain the list of elements in each set.

* Choose the name for the union to be the name of the larger set [so changes are
fewer]

@ UNION(X, y):still @(n) in the worst-case

I But this rarely happens...
can we refine the analysis?

11

Amortized analysis

= Amortized analysis. Determine worst-case running time of a
sequence of k data structure operations.

* Standard (worst-case) analysis can be too pessimistic if the only way to encounter
an expensive operation is when there were lots of previous cheap operations

Theorem. A sequence of k Union costs O(klog k). [contrast w. O(k?)]
= Pf. [Aggregate method]

* Start from singletons. After k unions, at most 2k nodes involved.

* Any Component|x] changes only when merged with a larger set;

* i.e., change of name implies doubling of the set size;

=>» For any x, # changes at most log,(2k)

=>» O(klogk) for a sequence of k Unions [i.e., each has amortized cost O(logk)].

12

Parent-link representation

= Represent each set as a tree
* Each element has an explicit parent pointer in the tree
* The root (points to itself) serves as the “name”
* FIND(X): find the root of the tree containing x
* UNION(X, y): merge trees containing x and y.

Make-set @ @ @
Union(1,7) f Union(1,2) & ’

Naive linking
= Naive linking: link root of first tree to root of second tree

@ Union(1,2) > ? """"" ;

= Observation. A Union can take ©(n) in the worst case
* Find root of this tree: determined by the height of the tree

Link-by-size

= Link-by-size: maintain a tree size (# of nodes in the set) for each
root node; link smaller tree to larger

@ Union(1,2)

= Pf. [NB. time « height]

* (By Induction) For every root node r:
size[r] = 2helght()

=>» (worst-case) height < logn

15

Disjoint-set summary

Array / Naive | Link-by-Size Link-by-Size w.
linking (Balanced tree) | path-compressing

Find (worst-case) 0(1) O(logn) O(logn)
Union (worst-case) O(n) O(logn) O(logn)
Amortized cost: k unionsand k O(klogk) O(klogk) O(ka(k))

finds, starting from singleton

a(n): inverse Ackermann function;
< 4 for any practical cases

16

