
Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of
Algorithms

M, 10/14/19

Lecture 18

Fang Song
Texas A&M U

• An excursion to data structures
• Amortized analysis

Credit: based on slides by K. Wayne

Recall: priority queue for Dijkstra’s algorithm

1

PriorityQueue Q: set of ! elements w. associated key values (alarm)
• Change-key(x). change key value of an element
• Delete-min. Return the element with smallest key, and remove it.
• Can be done in " log ! time (by a heap)

&'()*+,-(/, *) // initialize 2(3) = 0, others 2 6 = ∞
Make Q from V using 2(⋅) as key value
While Q not empty

6 ← Delete−min @
// pick node with shortest distance to s
For all edges 6, A ∈ C

If 2 A > 2 6 + F(6, A)
2 A ← 2 6 + F(6, A) and Change-key(v)

"(Glog!)

"(!log!)

Dijkstra
"((G + !)log!)

Further improvement
possible by Fibonacci
heap [More to come]

N.B. BFS uses ordinary Queue. Dijkstra = BFS+Priority Queue

§Disjoint-set (aka Union-Find) data structure
• Make−Set()): create a singleton set containing x
• Find−Set()): return the “name” of the unique set

containing)
• Union(), 2):merge the sets containing) and 2

respectively

Recall: disjoint-set for Kruskal’s algorithm

2

4

Linked list Balanced tree

Find (worst-case) Θ(1) Θ(log 9)
Union (worst-case) Θ(9) Θ(log 9)

Amortized analysis: : unions and
: finds, starting from singleton

Θ(: log :) Θ(: log :)

3

Today

A taste of data structures & amortized analysis

Implementing Priority Queue

§ (Sorted) Array?
J Change-key: ! 1 ?
L Insert: Ω %

4

PriorityQueue: set of % elements w. associated key values
• Change-key. change key value of an element
• Delete-min. Return the element with smallest key, and remove it.
• Insert/Delete
• Goal: ! log % time worst-case

3 5 6 9 1012

7

§ (Sorted) Linked list?
J Delete-min: !(1)
L Insert: Ω %
3 5

ℎ 3
6 9 10 12

7

Binary heaps

§Binary complete tree. Perfectly balanced, except for bottom level
§Heap-ordered tree. For every node, !"# $ℎ&'(≥ !"#(+,-"./)
§Binary heap. Heap-ordered complete binary tree

5

https://photos.com/featured/doum-palm-hyphaene-
coriacea-and-james-warwick.html?product=poster

18

6

12

8

25

10

11

1721 19

https://photos.com/featured/doum-palm-hyphaene-coriacea-and-james-warwick.html?product=poster

Representing a binary heap

§Array representation. ! 1,2, … , &
• Parent of node at ' is at ⌊'/2⌋
• Children of node at ' is at 2' and 2' + 1

6

18

6

12

8

25

10

11

1721 19

6 10 8 1218 11
1 2 3 4 5 6 7 8 9 10 11

25211719!

1

2

4 5 6 7

8 9 10

3

Binary heap: Insert
§ Insert. Add new node at end; repeatedly exchange new node

with its parent until heap order is restored.

7

18

6

12

8

25

10

11

1721 19 7
Add key to heap

(violates heap order)

7

10

6

12

8

2511

1721 19 18 Swim up

Time:)(log .)

Binary heap: Delete-min
§ Extract Min at root; upgrade last node to root and “heapify” it!

8

6
6

1812

8

25

10

11

1721 19

Sink down
8

1812

11

25

10

19

1721

Time:)(log .)Exchange last node
to root (violates

heap order)

Implementing priority queue

9

Operation Linked list Binary heap Fibonacci Heap*
Insert !(#) !(log #) !(1)
Delete-
min

!(1) !(log #) !(log #)

Change-
key

!(#) !(log #) !(1)

Disjoint-set data structure

§Goal. Three operations on a collection of disjoint sets.
• Make−Set()): create a singleton set containing)
• Find − Set()): return “name” of the unique set containing)
• Union(), 2):merge the sets containing) and 2 respectively

10

§ Performance parameters
• 4=number of calls to the three op’s
• 5=number of elements

Simple implementation by an array

§Array !"#$"%&%'[)]: name of the set containing)
• FIND(x): * 1
• UNION(x, y): Θ % update all nodes in sets containing) and -

11

§ Some improvement
• Maintain the list of elements in each set.
• Choose the name for the union to be the name of the larger set [so changes are

fewer]
L UNION(x, y): still Θ % in the worst-case

But this rarely happens…
can we refine the analysis?

Amortized analysis

Theorem. A sequence of ! Union costs O !log ! . [contrast w. & !']

12

§ Pf. [Aggregate method]
• Start from singletons. After ! unions, at most 2! nodes involved.
• Any)*+,*-.-/[1] changes only when merged with a larger set;
• i.e., change of name implies doubling of the set size;
è For any 1, # changes at most log2(2!)
è &(! log !) for a sequence of ! Unions [i.e., each has amortized cost &(log !)].

§Amortized analysis. Determine worst-case running time of a
sequence of ! data structure operations.
• Standard (worst-case) analysis can be too pessimistic if the only way to encounter

an expensive operation is when there were lots of previous cheap operations

Parent-link representation

§ Represent each set as a tree
• Each element has an explicit parent pointer in the tree
• The root (points to itself) serves as the “name”
• FIND(x): find the root of the tree containing !
• UNION(x, y): merge trees containing ! and ".

13

Make-set 1 2 7…

Union(1,7) 7

1

Union(1,2) 7

1 2

2

7

1

?

Naïve linking

§Naïve linking: link root of first tree to root of second tree

14

2

7

1

27

1

Union(1,2)

§Observation. A Union can take Θ(&) in the worst case
• Find root of this tree: determined by the height of the tree

Link-by-size

§ Link-by-size: maintain a tree size (# of nodes in the set) for each
root node; link smaller tree to larger

15

27

1

Union(1,2)

§Observation. Union takes O(log)) in the worst case.

7

1 2

§ Pf. [NB. time ∝ height]
• (By Induction) For every root node ,:
-./0[,] ≥ 2456748(9)

è(worst-case) height ≤ log)

8

9 4 3

7

1 5 2

6
Union(3,5)

Disjoint-set summary

16

Array / Naïve
linking

Link-by-Size
(Balanced tree)

Link-by-Size w.
path-compressing

Find (worst-case) Θ(1) Θ(log () Θ(log ()
Union (worst-case) Θ(() Θ(log () Θ(log ()

Amortized cost:) unions and)
finds, starting from singleton

Θ() log)) Θ() log)) Θ()*()))

*((): inverse Ackermann function;
≤ 4 for any practical cases

