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Recall: priority queue for Dijkstra’s algorithm
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PriorityQueue Q: set of ! elements w. associated key values (alarm)
• Change-key(x). change key value of an element
• Delete-min. Return the element with smallest key, and remove it. 
• Can be done in " log ! time (by a heap)

&'()*+,-(/, *) // initialize 2(3) = 0, others 2 6 = ∞
Make Q from V using 2(⋅) as key value
While Q not empty

6 ← Delete−min @
// pick node with shortest distance to s
For all edges 6, A ∈ C

If 2 A > 2 6 + F(6, A)
2 A ← 2 6 + F(6, A) and Change-key(v)

"(Glog!)

"(!log!)

Dijkstra
"((G + !)log!)

Further improvement 
possible by Fibonacci 
heap [More to come]

N.B. BFS uses ordinary Queue. Dijkstra = BFS+Priority Queue



§Disjoint-set (aka Union-Find) data structure
• Make−Set()): create a singleton set containing x
• Find−Set()): return the “name” of the unique set 

containing )
• Union(), 2):merge the sets containing ) and 2

respectively

Recall: disjoint-set for Kruskal’s algorithm
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Linked list Balanced tree

Find (worst-case) Θ(1) Θ(log 9)
Union (worst-case) Θ(9) Θ(log 9)

Amortized analysis: : unions and 
: finds, starting from singleton

Θ(: log :) Θ(: log :)



3

Today

A taste of data structures & amortized analysis



Implementing Priority Queue

§ (Sorted) Array? 
J Change-key: ! 1 ?
L Insert: Ω %
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PriorityQueue: set of % elements w. associated key values
• Change-key. change key value of an element
• Delete-min. Return the element with smallest key, and remove it. 
• Insert/Delete
• Goal: ! log % time worst-case

3 5 6 9 1012

7

§ (Sorted) Linked list?
J Delete-min: !(1)
L Insert: Ω %
3 5

ℎ 3
6 9 10 12
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Binary heaps

§Binary complete tree. Perfectly balanced, except for bottom level
§Heap-ordered tree. For every node, !"# $ℎ&'( ≥ !"#(+,-"./)
§Binary heap. Heap-ordered complete binary tree
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Representing a binary heap

§Array representation. ! 1,2, … , &
• Parent of node at ' is at ⌊'/2⌋
• Children of node at ' is at 2' and 2' + 1
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Binary heap: Insert
§ Insert. Add new node at end; repeatedly exchange new node 

with its parent until heap order is restored. 
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Binary heap: Delete-min
§ Extract Min at root; upgrade last node to root and “heapify” it!
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Implementing priority queue
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Operation Linked list Binary heap Fibonacci Heap*
Insert !(#) !(log #) !(1)
Delete-
min

!(1) !(log #) !(log #)

Change-
key

!(#) !(log #) !(1)



Disjoint-set data structure

§Goal. Three operations on a collection of disjoint sets.
• Make−Set()): create a singleton set containing )
• Find − Set()): return “name” of the unique set containing )
• Union(), 2):merge the sets containing ) and 2 respectively
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§ Performance parameters
• 4=number of calls to the three op’s
• 5=number of elements



Simple implementation by an array

§Array !"#$"%&%'[)]: name of the set containing )
• FIND(x): * 1
• UNION(x, y): Θ % update all nodes in sets containing ) and -
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§ Some improvement
• Maintain the list of elements in each set. 
• Choose the name for the union to be the name of the larger set [so changes are 

fewer]
L UNION(x, y): still Θ % in the worst-case 

But this rarely happens… 
can we refine the analysis?



Amortized analysis

Theorem. A sequence of ! Union costs O !log ! . [contrast w. & !' ]
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§ Pf. [Aggregate method]
• Start from singletons. After ! unions, at most 2! nodes involved. 
• Any )*+,*-.-/[1] changes only when merged with a larger set;
• i.e., change of name implies doubling of the set size; 
è For any 1, # changes at most log2(2!)
è &(! log !) for a sequence of ! Unions [i.e., each has amortized cost &(log !)].

§Amortized analysis. Determine worst-case running time of a 
sequence of ! data structure operations. 
• Standard (worst-case) analysis can be too pessimistic if the only way to encounter 

an expensive operation is when there were lots of previous cheap operations



Parent-link representation

§ Represent each set as a tree
• Each element has an explicit parent pointer in the tree
• The root (points to itself) serves as the “name”
• FIND(x): find the root of the tree containing !
• UNION(x, y): merge trees containing ! and ".
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Make-set 1 2 7…

Union(1,7) 7

1

Union(1,2) 7

1 2
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1
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Naïve linking

§Naïve linking: link root of first tree to root of second tree
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Union(1,2)

§Observation. A Union can take Θ(&) in the worst case
• Find root of this tree: determined by the height of the tree 



Link-by-size

§ Link-by-size: maintain a tree size (# of nodes in the set) for each 
root node; link smaller tree to larger

15

27

1

Union(1,2)

§Observation. Union takes O(log )) in the worst case. 
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1 2

§ Pf. [NB. time ∝ height]
• (By Induction) For every root node ,: 
-./0[,] ≥ 2456748(9)

è(worst-case) height ≤ log )
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Union(3,5)



Disjoint-set summary
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Array / Naïve 
linking

Link-by-Size 
(Balanced tree)

Link-by-Size w. 
path-compressing

Find (worst-case) Θ(1) Θ(log () Θ(log ()
Union (worst-case) Θ(() Θ(log () Θ(log ()

Amortized cost: ) unions and )
finds, starting from singleton

Θ() log )) Θ() log )) Θ()*()))

*((): inverse Ackermann function; 
≤ 4 for any practical cases


