W, 10/09/19

--

Fall’'19 CSCE 629 Lecture 16

Ana|y5is Of * Interval partitioning
o ~* Minimum spanning tree
Algorithms

__

--

Fang Song
Texas A&M U

__

Credit: based on slides by A. Smith & K.WWayne

Interval Partitioning Problem

Scheduling classes
" Input. Lectures {sj, f;}

= OQutput. Minimum number of classrooms to schedule all lectures
so that no two occur at the same time in the same room.

Can you do better’ IO Iectures scheduled in 4 classrooms
Rm # |

_ N W s

9:00 10 11 12: 00 13 14 15 16 17:00

Interval Partitioning Problem

Scheduling classes
" Input. Lectures {sj, f;}

= OQutput. Minimum number of classrooms to schedule all lectures
so that no two occur at the same time in the same room.

YES! |0 lectures scheduled in 3 classrooms
Rm# |

10 11 12 13 14 15 16 17

_ N W s

o ————

Greedy algorithm

= |dea. Sort lectures in increasing order of start time: assign lecture
to any compatible classroom.

IntPartition({s;, f;}) // r « 0 # of allocated rooms
1. Sort by starting time sothats; <s, <---<s,
& Forj=1,..,n
If j compatible with some classroom k } How to do it in O(logr)
Schedule j in room k
Else allocate 'n.ew classroom r + 1 OBS. # rm needed >
Schedule j inroom r + 1

el depth of input intervals

(i.e., Max. number of
* Running time. O(nlogn) lectures that overlap)

= Optimality. #Rm allocated = depth of input intervals v

Minimum spanning tree (MST)

" Input. A connected undirected graph G = (V,E)
w:E - R
* For now, assume all edge weights are

N A tree that connects all vertices

= Output. T of minimum weight
w() =) wuuv)
(u,v)€eT
Applications

* Cluster, Real-time face verification
* Network design (communication, electrical, computer, road)

Example of MST

Pop quiz 1

Which of the following are true for all spanning trees?

A. Contains exactly |VV| — 1 edges
B. The removal of any edge disconnects it

C. The addition of any edge creates a cycle
D. All of the above

Cayley’s theorem.

The complete graph on n nodes has n™~2
[Brute-force forbidden]

spanning trees.

Brainstorming
Greedy strategies for computing an MST?

Greedy algorithms for MST

= Kruskal’s. Start with T = @. Insert edges in ascending
order of weights, unless it creates a cycle.

_ Edge-driven

= Reverse-Delete. Start with T = E. Remove edges in
descending order of weights, unless it disconnects T.

= Prim’s. Start with some node s. Grow a tree T from
s outward. Add v to T such that w(u, v) cheapest

and u €T. Sounds familiar? Dijkstra’s?

Node-driven

© In this extremely lucky case, all of them work! But correctness
proofs are non-trivial. We need the following tools to prove them.

8

Cycles and cuts

= Cycle: set of edges of form (a, b), (b, ¢), ..., (z,a)
= Cut: a subset of nodes S € IV

= Cutset D(S): subset of edges with exactly one endpoint in S.

Ex. Cut S = {4,5,8}
Cutset D(S) = {(4,3),(5,7), (5,6),(7,8)}

Observation: cycle-cut intersection

Claim*. A cycle & a cutset intersect in an number of edges.

= Proof. A cycle has to leave & enter the cut the same number of
times.

10

Cut Property

Cut property. Let S be a subset of nodes. Let e be the min weight
edge with exactly one endpoint in S. Then any MST T contains e.

" Proof. (exchange argument) < / O
* Suppose e does not belong to T
* Adding e to T creates a cycle C
* Edge e is both in C and in the cutset D(S)

=>» there exists another edge, say f, that is in
both C and D. [Claim*] O

 T':=T U {e}— {f}is also a spanning tree
* we < wr = w(T') < w(T).Contradiction!

11

Cycle property

Cycle property. Let C be a cycle, and let f be the max weight edge
in C. Then any MST T does not contain f.

" Proof. (exchange argument) f O
* Suppose f belongs to T 5
* Deleting f creates a cut S
 Edge f is both in C and in the cutset D(S)

=>» there exists another edge, say e, that is in both
C and D.

« T':=T U{e}—{f}is also a spanning tree O
* we < wr = w(T') <w(T).Contradiction!

12

E10/11/19

--

Fall’'19 CSCE 629 Lecture 17

* Minimum spanning tree

Analysis of
Algorithms

__

--

Fang Song
Texas A&M U

__

Credit: based on slides by A. Smith & K.WWayne

Pop quiz 2

Let G be a connected undirected graph w. distinct edge weights.

* Let e be the cheapest edge in G. Some MST of G contains e!?
True. By cut property
or

* Let e be the most expensive edge in G. No MST of G contains e!?

False. Counterexample:if G is a
tree, all its edges are in the MST

14

Prim’s algorithm: correctness

Prim’s algorithm [Janik 1930, Prim 1959]

Start with some node s. Grow a tree T from s outward.Add v to T such that
w(u,v) cheapestand u € T.

T

» Correctness
* Apply cut property to T
* When edge weights are distinct, every
edge that is added must be in the MST
=>» Prim’s algorithm outputs the MST

15

Kruskal’s algorithm: correctness

Kruskal's algorithm [Kruskal 1956]

Start with T = Q. Insert edges in ascending order of weights, unless it creates a cycle.

= Correctness

Case 1.If adding e to T creates a cycle, Case 2.Adding e = (u, V) to T according

discard e according to cycle property. ~ to cut property. [5 = connected
component of u]

16

Removing distinct weight assumption

» Perturbation argument

6 +
C/ 6 +
o
14 7
Q 8
3

2e L [w(T") = w(T)

Implementing Prim’s

= Maintain VV - T as a priority queue. [as in Dijkstra’s]
= Key(v): weight of the least-weight edge connecting it to a vertex in T

Prim(G,{w,})
1. Q « MakeQueue(V) } 0(n)
2. key|s] < 0forans €V; key|v] « o otherwise
3. While Q not empty N
u < Delete—min(Q) //adduto T
For v € Adj|u] // consider neighbors ofu| 75 Delete-min
IfveQandw(u,v) < key[v] - Change-key
key|v] « w(u,v)
Change—key(v)
parent(v) « u
4. ReturnT <« {(v,parent(v))} Time: O((m + n)logn)
Same as Dijkstra’s

—_—

18

Implementing Kruskal’s

= Disjoint-set (aka Union-Find) data structure T
* Make—Set(x): create a singleton set containing x

* Find—Set(x): return the “name” of the unique set
containing x

* Union(x, y): merge the sets containing x and y
respectively

| Linkedlist

Find (worst-case) 0(1) O(logn)
Union (worst-case) O(n) O(logn)
Amortized analysis: k unions and 0(klogk) O(klogk)

k finds, starting from singleton

19

Implementing Kruskal’s

Kruskal(G,{w,})

// T « @; sort m edges so that w(e;) < w(ey) < - } O(mlogm)
1. Forv € V, MakeSet(v)
& Fori=1,.. m N

(u,v) < e; // ith cheapest edge 2m Find-Set
. . . . > - .
If Find—Set(u) # Find—Set(v) // same component* = UrferEat
T «<TU {ei}
Union—Set(u, v) B
3. Return T

Running time: O(mlogm + nlogn) = O(mlogn)

20

Warning on Greedy algorithms

Correctness

NOT GUARANTEED
Greedy algorithms are tempting but rarely work! e fesosms surms wss smsme -

Only with care (as sanity check or last resort)

"You will not receive any credit for any greedy algorithm, on any
homework or exam, even if the algorithm is correct, without a
formal proof of correctness.” —Erickson

| second, and we adopt this policy in this class tool!

21

