
Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of
Algorithms

W, 10/09/19

Lecture 16

Fang Song
Texas A&M U

• Interval partitioning
• Minimum spanning tree

Credit: based on slides by A. Smith & K. Wayne

Interval Partitioning Problem

Scheduling classes
§ Input. Lectures {"#, %#}
§Output. Minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

1

'
(

)
ℎ

+ ,
- .

/%
9: 00 10 11 12: 00 13 14 15 16 17: 00

1
2
3
4

Rm #

10 lectures scheduled in 4 classroomsCan you do better?

Interval Partitioning Problem

Scheduling classes
§ Input. Lectures {"#, %#}
§Output. Minimum number of classrooms to schedule all lectures

so that no two occur at the same time in the same room.

2

'
(

)

ℎ

+
,

-

.
/

%

9 10 11 12 13 14 15 16 17
1
2
3
4

Rm #

10 lectures scheduled in 3 classroomsYES!

Greedy algorithm

§ Idea. Sort lectures in increasing order of start time: assign lecture
to any compatible classroom.

3

!"#$%&#'#'("({+,, .,}) // 1 ← 0 # of allocated rooms
1. Sort by starting time so that +4 ≤ +6 ≤ ⋯ ≤ +8
2. For 9 = 1,… , =

If 9 compatible with some classroom >
Schedule 9 in room >

Else allocate new classroom 1 + 1
Schedule 9 in room 1 + 1
1 ← 1 + 1

§Optimality. #Rm allocated = depth of input intervals

OBS. # rm needed ≥
depth of input intervals
(i.e., Max. number of
lectures that overlap)§ Running time. A = log =

How to do it in A(log 1)

Minimum spanning tree (MST)

§ Input. A connected undirected graph ! = #, %
• Weight function &:% → ℝ
• For now, assume all edge weights are distinct

4

§Output. A spanning tree * of minimum weight
& * ≔ ,

-,. ∈0
&(2, 3)

A tree that connects all vertices

Applications
• Cluster, Real-time face verification
• Network design (communication, electrical, computer, road)
• ….

Example of MST

5

7

6 12
5

714

3 10

8
15

9

7

6 12
5

714

3 10

8
15

9

Pop quiz 1

Which of the following are true for all spanning trees?

6

A. Contains exactly ! − 1 edges
B. The removal of any edge disconnects it
C. The addition of any edge creates a cycle
D. All of the above

7

Brainstorming
Greedy strategies for computing an MST?

Cayley’s theorem.
The complete graph on ! nodes has !"#$ spanning trees.

[Brute-force forbidden]

Greedy algorithms for MST

§ Kruskal’s. Start with ! = ∅. Insert edges in ascending
order of weights, unless it creates a cycle.

8

§ Reverse-Delete. Start with ! = $. Remove edges in
descending order of weights, unless it disconnects !.

§ Prim’s. Start with some node %. Grow a tree ! from
% outward. Add & to ! such that ' (, & cheapest
and (∈ !.

Edge-driven

Node-driven
Sounds familiar? Dijkstra’s?

J In this extremely lucky case, all of them work! But correctness
proofs are non-trivial. We need the following tools to prove them.

Cycles and cuts

§Cycle: set of edges of form !, # , #, $, … , (', !)

9

§Cut: a subset of nodes) ⊆ +

§Cutset ,()): subset of edges with exactly one endpoint in).

1
2 3

7
8

5

46 Ex. Cut) = {4,5,8}
Cutset ,()) = { 4,3 , 5,7 , 5,6 , (7,8)}

Observation: cycle-cut intersection

Claim*. A cycle & a cutset intersect in an even number of edges.

10

§ Proof. A cycle has to leave & enter the cut the same number of
times.

! "\S%

!

Cut Property

Cut property. Let ! be a subset of nodes. Let " be the min weight
edge with exactly one endpoint in !. Then any MST # contains ".

11

"

$§ Proof. (exchange argument)
• Suppose " does not belong to #
• Adding " to # creates a cycle %
• Edge " is both in % and in the cutset & !
è there exists another edge, say $, that is in

both % and &. [Claim*]
• #' ≔ # ∪ " − {$} is also a spanning tree
• -. < -0 è - #' < - # . Contradiction!

!

Cycle property

12

"

#§ Proof. (exchange argument)
• Suppose # belongs to $
• Deleting # creates a cut !
• Edge # is both in % and in the cutset & !
è there exists another edge, say ", that is in both

% and &.
• $' ≔ $ ∪ " − {#} is also a spanning tree
• -. < -0 è - $' < - $. Contradiction!

Cycle property. Let % be a cycle, and let # be the max weight edge
in %. Then any MST $ does not contain #.

Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of
Algorithms

F, 10/11/19

Lecture 17

Fang Song
Texas A&M U

• Minimum spanning tree

Credit: based on slides by A. Smith & K. Wayne

Pop quiz 2

Let ! be a connected undirected graph w. distinct edge weights.

14

• Let " be the cheapest edge in !. Some MST of ! contains "?

• Let " be the most expensive edge in !. No MST of ! contains "?

True. By cut property

False. Counterexample: if ! is a
tree, all its edges are in the MST

Prim’s algorithm: correctness

Prim’s algorithm [Janik 1930, Prim 1959]
Start with some node !. Grow a tree " from ! outward. Add # to " such that
$ %, # cheapest and % ∈ ".

15

§Correctness
• Apply cut property to "
• When edge weights are distinct, every

edge that is added must be in the MST
è Prim’s algorithm outputs the MST

"
!

Kruskal’s algorithm: correctness

Kruskal’s algorithm [Kruskal 1956]
Start with ! = ∅. Insert edges in ascending order of weights, unless it creates a cycle.

16

§Correctness

!

$

Case 1. If adding $ to ! creates a cycle,
discard $ according to cycle property.

Case 2. Adding $ = (',)) to ! according
to cut property. [+ = connected
component of ']

'

!

$
+

Removing distinct weight assumption

§ Perturbation argument

17

7

6 + #$
6 + #%

714

3

8

∑#, ≪ |/(12) − /(1)|

Implementing Prim’s
§ Maintain ! –# as a priority queue. [as in Dijkstra’s]
§ $%&((): weight of the least-weight edge connecting it to a vertex in #

18

*+,-(., {12})

1. 6 ← 89:%6;%;%(!)

2. :%&[>] ← 0 for an > ∈ !; :%&[(] ← ∞ otherwise
3. While Q not empty

; ← Delete−min(Q) // add u to T
For (∈ LMN[;] // consider neighbors of u

If (∈ 6 and 1 ;, (< :%&[(]

:%& (← 1(;, ()

Change−key(()
V9W%XY (← ;

4. Return # ← {((, V9W%XY(())}

Z(X)

X Delete-min
[Change-key

Time: Z([+ X log X)
Same as Dijkstra’s

§Disjoint-set (aka Union-Find) data structure
• Make−Set()): create a singleton set containing x
• Find−Set()): return the “name” of the unique set

containing)
• Union(), 2):merge the sets containing) and 2

respectively

Implementing Kruskal’s

19

4

Linked list Balanced tree

Find (worst-case) Θ(1) Θ(log 9)
Union (worst-case) Θ(9) Θ(log 9)

Amortized analysis: : unions and
: finds, starting from singleton

Θ(: log :) Θ(: log :)

Implementing Kruskal’s

20

!"#$%&'(), {,-})
// 0 ← ∅; sort 3 edges so that , 45 ≤ , 47 ≤ ⋯
1. For 9 ∈ ;, MakeSet(9)
2. For B = 1,… ,3

F, 9 ← 4G // Bth cheapest edge
If Find−Set F ≠ Find−Set(9) // same component?
0 ← 0 ∪ {4G}
Union−Set F, 9

3. Return 0

Q 3 log3

23 Find-Set
U Union-Set

Running time: Q 3 log3 + U log U = Q(3 log U)

Warning on Greedy algorithms

”You will not receive any credit for any greedy algorithm, on any
homework or exam, even if the algorithm is correct, without a
formal proof of correctness.” –Erickson

I second, and we adopt this policy in this class too!

21

Greedy algorithms are tempting but rarely work!
Only with care (as sanity check or last resort)

Correctness

