M, 10/07/19

--

Fall’'19 CSCE 629 Lecture 15

A"ﬁlygis Of Dijkstra’s algorithm cont'd
. ~ + Interval scheduling
Algorithms

__

--

Fang Song
Texas A&M U

__

Reflection on Dijkstra: greedy stays ahead

= Known region R: in which the shortest distance to s is known
= Growing R: adding v that has the shortest distance to s

* How to Identify v? The one that minimizes d(u) + I[(u,v) foru € R
Shortest path to some u in known region,

e s ~ followed by a single edge (u, v)
—<= A

,/; _________________________ \ Dijk(G, s) // initialize d(s) = 0, d(u) = © , R=0
SO u i While R # V
! N, T ! Pick v € R w. smallest d(v) // by Priority Q
i Known- R Add v to R
\ Region L . For all edges (v,w) € E

RN ¢ If d(v) >d) + l(u,v)

"""" dw) <« dw) + l(u,v)

Contrast with Bellman-Ford

= Dijkstra (Greedy) O((m + n) logn)
d(v) = mind(w) + L(u, v)
* Positive weight: no need to wait; more edges in a path do not help
= Bellman-Ford (Dynamic programming) O (mn)

OPT(i,v) = min {OPT(i — 1,v), min (OPT(i — 1,w) + Ly}
VoW

“*Global vs. Local
* Dijkstra’s requires global information: known region & which to add
* Bellman-Ford uses only local knowledge of neighbors, suits distributed setting

Network routing: distance-vector protocol

» Communication network
* Nodes: routers
* Edges: direct communication links

: naturally nonnegative, but
* Cost of edge: delay on link. / 5

Bellman-Ford used anyway!

= Distance-vector protocol [“routing by rumor”]

* Each router maintains a vector of shortest-path lengths to every other node
(distances) and the first hop on each path (directions).

* Algorithm: each router performs separate computations for each potential
destination node.

= Path-vector protocol: coping with dynamic costs

Correctness of Dijkstra’s algorithm

g gy,

Invariant. For each node u € R, d(u) is Known Region R,

the length of a shortest s — u path / .
J P ,"S ,,,,,,,,,,,,,,, Q """"
Proof. (By induction on size of R) f Q ___________ u

= Base case: |R| = 1 trivial !
= Induction hypothesis: true for |R| = k > 1 *_

* Let v be the next node added to R and (u, v) be the chosen edge. Call this s —
u — v path P.

* Consider any s — v path Q. [Next show it’s no shorter than P]
* Let (x,y) be the first edge in Q leaving R;let Q' be the s — x segment

* 1(Q) = 1(Q") + I(x,y) = d(x) + l(x,y) = I(P); because Dijkstra’s picked v in
this iteration (node outside R with shortest distance to s)

Recall: weighted interval scheduling

= Input. n jobs; job j starts at s;, finishes at f;, weight w;
= Output. Subset of mutually compatible jobs of maximum weight

* DP algorithm O(nlogn)

Today
O(nlogn) Greedy algorithm for w; = 1.

Greedy strategies

Recall. DP recurrence. OPT(j) = value of optimal solution to jobs 1,2, ...,]
0 ifj=0

OPT(j) = max{OPT(j — 1),w; + OPT(pre(j))} otherwise

= Greedy: be lazy & pick the next compatible job that “looks nice”

* Earliest start time: ascending order of s;.

* Earliest finish time: ascending order of f;.

* Shortest interval: ascending order of f; — s;.

* Fewest conflicts: the one that conflicts the least number of jobs go first.

= Exercise. Find counterexamples for each strategy (if possible)

Greedy: counterexamples

@ Earliest start time:

.
® Shortest interval:
]
® Fewest conflicts:
]

© Earliest finishing time

Greedy Algorithm: earliest finishing time

IntScheduling ({sj, f;})

1. Sort by finishing time sothat f; < f, <+ < f,—— O(nlogn)

2. A < @ // set of selected jobs
3. Forj=1,..,n

If j compatible with A - nXx0(1)

A< AU{j}

—_—

* Running time: O(nlogn)
= Correctness: proof by contradiction

* Suppose greedy is not optimal

* Consider an optimal strategy: one that agrees with Greedy for as many initial jobs
as possible

* Look at the first place that they differ: show a new optimal that agrees with
greedy

Greedy Algorithm: correctness

Proof (by contradiction): Suppose greedy is not optimal
* Let iy, iy, ..., I denote set of jobs selected by greedy
* Let ji,J2, ..., Jm be set of jobs in the optimal solution OPT where i; = j;,i; =
Jo, e, I = J;- for the largest possible value of r

* Sub i, ;4 for j,,q in OPT: still feasible and optimal (OPT’); but agrees with Greedy
at 7 + 1 positions; contradicts the maximality of r

Greedy il i) i iiq
OPT J1 J2 Ly Jr+1
OPTI jl j2 iT iT+1

Interval Partitioning Problem

Scheduling classes
" Input. Lectures {sj, f;}

= OQutput. Minimum number of classrooms to schedule all lectures
so that no two occur at the same time in the same room.

Can you do better’ IO Iectures scheduled in 4 classrooms
Rm # |

_ N W s

9:00 10 11 12: 00 13 14 15 16 17:00

10

Interval Partitioning Problem

Scheduling classes
" Input. Lectures {sj, f;}

= OQutput. Minimum number of classrooms to schedule all lectures
so that no two occur at the same time in the same room.

YES! |0 lectures scheduled in 3 classrooms
Rm# |

10 11 12 13 14 15 16 17

_ N W s

>

o ————

11

Greedy algorithm

= |dea. Sort lectures in increasing order of start time: assign lecture
to any compatible classroom.

IntPartition({s;, f;}) // r « 0 # of allocated rooms
1. Sort by starting time sothats; <s, <---<s,
& Forj=1,..,n
If j compatible with some classroom k } How to do it in O(logr)
Schedule j in room k
Else allocate 'n.ew classroom r + 1 OBS. # rm needed >
Schedule j inroom r + 1

el depth of input intervals

(i.e., Max. number of
* Running time. O(nlogn) lectures that overlap)

= Optimality. #Rm allocated = depth of input intervals v

12

