M, 10/07/19

Fall'19 CSCE 629

Analysis of Algorithms

Fang Song Texas A&M U

Lecture 15

- Dijkstra's algorithm cont'd
- Interval scheduling

• Dijkstra (Greedy) $O((m+n)\log n)$

$$\frac{d(v)}{u \in R} = \min_{u \in R} d(u) + l(u, v)$$

Contrast with Bellman-Ford

• Positive weight: no need to wait; more edges in a path do not help

Bellman-Ford (Dynamic programming) 0(mn)

$$OPT(i, v) = \min\left\{OPT(i-1, v), \min_{v \to w \in E} \{OPT(i-1, w) + l_{v \to w}\}\right\}$$

✤Global vs. Local

- Dijkstra's requires global information: known region & which to add
- Bellman-Ford uses only local knowledge of neighbors, suits distributed setting

Communication network

- Nodes: routers
- Edges: direct communication links
- Cost of edge: delay on link.

naturally nonnegative, but Bellman-Ford used anyway!

Distance-vector protocol ["routing by rumor"]

• Each router maintains a vector of shortest-path lengths to every other node (distances) and the first hop on each path (directions).

Network routing: distance-vector protocol

- Algorithm: each router performs separate computations for each potential destination node.
- Path-vector protocol: coping with dynamic costs

Invariant. For each node $u \in R$, d(u) is Known Region R the length of a shortest s - u path

Proof. (By induction on size of R)

• Base case: |R| = 1 trivial

• Induction hypothesis: true for $|R| = k \ge 1$

• Let v be the next node added to R and (u, v) be the chosen edge. Call this s - u - v path P.

Correctness of Dijkstra's algorithm

- Consider any s v path Q. [Next show it's no shorter than P]
- Let (x, y) be the first edge in Q leaving R; let Q' be the s x segment
- $l(Q) \ge l(Q') + l(x, y) \ge d(x) + l(x, y) \ge l(P)$; because Dijkstra's picked v in this iteration (node outside R with shortest distance to s)

Input. n jobs; job j starts at s_j, finishes at f_j, weight w_j Output. Subset of mutually compatible jobs of maximum weight

Recall: weighted interval scheduling

DP algorithm O(n log n)

Greedy strategies

Recall. DP recurrence. OPT(j) = value of optimal solution to jobs 1,2, ..., j

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max\{OPT(j-1), w_j + OPT(pre(j))\} \text{ otherwise} \end{cases}$$

Greedy: be lazy & pick the next compatible job that "looks nice"

- Earliest start time: ascending order of s_j .
- Earliest finish time: ascending order of f_i .
- Shortest interval: ascending order of $f_j s_j$.
- Fewest conflicts: the one that conflicts the least number of jobs go first.

Exercise. Find counterexamples for each strategy (if possible)

Greedy: counterexamples

⊗ Shortest interval:

⊗ Fewest conflicts:

© Earliest finishing time

• Running time: $O(n \log n)$

Correctness: proof by contradiction

- Suppose greedy is not optimal
- Consider an optimal strategy: one that agrees with Greedy for as many initial jobs as possible
- Look at the first place that they differ: show a new optimal that agrees with greedy more

Proof (by contradiction): Suppose greedy is not optimal

- Let i_1, i_2, \dots, i_k denote set of jobs selected by greedy
- Let $j_1, j_2, ..., j_m$ be set of jobs in the optimal solution OPT where $i_1 = j_1, i_2 = j_2, ..., i_r = j_r$ for the largest possible value of r

Greedy Algorithm: correctness

• Sub i_{r+1} for j_{r+1} in OPT: still feasible and optimal (OPT'); but agrees with Greedy at r + 1 positions; contradicts the maximality of r

Scheduling classes

- Input. Lectures $\{s_j, f_j\}$
- Output. Minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Interval Partitioning Problem

Scheduling classes

- Input. Lectures $\{s_j, f_j\}$
- Output. Minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Interval Partitioning Problem

Idea. Sort lectures in increasing order of start time: assign lecture to any compatible classroom.

Greedy algorithm

 IntPartition({s_j, f_j}) // r ← 0 # of allocated rooms

 1. Sort by starting time so that $s_1 \le s_2 \le \dots \le s_n$

 2. For $j = 1, \dots, n$

 If j compatible with some classroom k

 Schedule j in room k

 Else allocate new classroom r + 1

 Schedule j in room r + 1

 $r \leftarrow r + 1$

(i.e., Max. number of lectures that overlap)

```
    Running time. O(n log n) lectures
    Optimality. #Rm allocated = depth of input intervals
```