
Fang Song
Texas A&M U

Fall’19 CSCE 629

Analysis of 
Algorithms

M, 10/07/19

Lecture 15

Fang Song
Texas A&M U

• Dijkstra’s algorithm cont’d
• Interval scheduling



Reflection on Dijkstra: greedy stays ahead

1

! "

#
Known 
Region

§Known region R: in which the shortest distance to ! is known
§Growing R: adding # that has the shortest distance to !
§How to Identify #? The one that minimizes % " + '(", #) for " ∈ ,

Shortest path to some " in known region, 
followed by a single edge (", #)

-./0(1, 2) // initialize %(!) = 0, % " = ∞ , R=∅
While R ≠ 8

Pick # ∉ , w. smallest %(#) // by Priority Q
Add # to ,
For all edges #,: ∈ ;
If % # > % " + '(", #)

% # ← % " + '(", #)



Contrast with Bellman-Ford

2

OPT $, & = min OPT $ − 1, & , min-→/∈1{OPT $ − 1,3 + 5-→/}

§Bellman-Ford (Dynamic programming) 7(9:)

< & = min=∈> < ? + 5(?, &)

§Dijkstra (Greedy) 7( 9 + : log :)

• Positive weight: no need to wait; more edges in a path do not help

vGlobal vs. Local
• Dijkstra’s requires global information: known region & which to add
• Bellman-Ford uses only local knowledge of neighbors, suits distributed setting



Network routing: distance-vector protocol 

3

§Communication network
• Nodes: routers
• Edges: direct communication links
• Cost of edge: delay on link. naturally nonnegative, but 

Bellman-Ford used anyway! 

§Distance-vector protocol [“routing by rumor”]
• Each router maintains a vector of shortest-path lengths to every other node 

(distances) and the first hop on each path (directions). 
• Algorithm: each router performs separate computations for each potential 

destination node. 

§ Path-vector protocol: coping with dynamic costs



Correctness of Dijkstra’s algorithm

Invariant. For each node ! ∈ #, $(!) is 
the length of a shortest ' − ! path 

4

'
!

)

Known Region #

*

+′
Proof. (By induction on size of R)
§Base case: |#| = 1 trivial 
§ Induction hypothesis: true for # = 0 ≥ 1

• Let ) be the next node added to # and (!, )) be the chosen edge. Call this ' −
! − ) path *. 
• Consider any ' − ) path +. [Next show it’s no shorter than *]
• Let (3, 4) be the first edge in + leaving #; let +’ be the ' − 3 segment
• 6 + ≥ 6 +7 + 6 3, 4 ≥ $ 3 + 6(3, 4) ≥ 6(*); because Dijkstra’s picked ) in 

this iteration (node outside # with shortest distance to ')

3
+

4



Recall: weighted interval scheduling

5

§ Input. ! jobs; job " starts at #$, finishes at %$, weight &$
§Output. Subset of mutually compatible jobs of maximum weight 

'
(

)
*
+

%
,

ℎ
0 1 2 3 4 5 6 7 8 9 10 11 Time

#$
&$

%$
Today

8(!log!) Greedy algorithm for &$ = 1.

§DP algorithm 8(! log !)



Greedy strategies

§Greedy: be lazy & pick the next compatible job that “looks nice“
• Earliest start time: ascending order of !".
• Earliest finish time: ascending order of #".
• Shortest interval: ascending order of #" − !".
• Fewest conflicts: the one that conflicts the least number of jobs go first.

6

Recall. DP recurrence. 

OPT ( = * 0 if ( = 0
max OPT ( − 1 ,3" + OPT 567 ( otherwise

OPT j = value of optimal solution to jobs 1,2, … , j

§ Exercise. Find counterexamples for each strategy (if possible)



Greedy: counterexamples

L Earliest start time:

7

L Shortest interval:

L Fewest conflicts: 

J Earliest finishing time



Greedy Algorithm: earliest finishing time

§ Running time: !(# log #)

8

()*+,-./012)3 ({56, 86})
1. Sort by finishing time so that 8: ≤ 8< ≤ ⋯ ≤ 8>
2. A ← ∅ // set of selected jobs
3. For D = 1,… , #

If  D compatible with A 
A ← A ∪ {D}

#×!(1)

!(#log#)

§Correctness: proof by contradiction
• Suppose greedy is not optimal
• Consider an optimal strategy: one that agrees with Greedy for as many initial jobs 

as possible 
• Look at the first place that they differ: show a new optimal that agrees with 

greedy more



Greedy Algorithm: correctness

9

Proof (by contradiction): Suppose greedy is not optimal
• Let !", !$, … , !& denote set of jobs selected by greedy
• Let '", '$, … , '( be set of jobs in the optimal solution OPT where !" = '", !$ =
'$, … , !* = '* for the largest possible value of +

!" !$ !* !*,"Greedy

'" '$ !* '*," …OPT
'" '$ !* …!*,"OPT’

• Sub !*," for '*," in OPT: still feasible and optimal (OPT’); but agrees with Greedy 
at + + 1 positions; contradicts the maximality of +



Interval Partitioning Problem 

Scheduling classes
§ Input. Lectures {"#, %#}
§Output. Minimum number of classrooms to schedule all lectures 

so that no two occur at the same time in the same room. 

10

'
(

)
ℎ

+ ,
- .

/%
9: 00 10 11 12: 00 13 14 15 16 17: 00

1
2
3
4

Rm #

10 lectures scheduled in 4 classroomsCan you do better?



Interval Partitioning Problem 

Scheduling classes
§ Input. Lectures {"#, %#}
§Output. Minimum number of classrooms to schedule all lectures 

so that no two occur at the same time in the same room. 

11

'
(

)

ℎ

+
,

-

.
/

%

9 10 11 12 13 14 15 16 17
1
2
3
4

Rm #

10 lectures scheduled in 3 classroomsYES!



Greedy algorithm

§ Idea. Sort lectures in increasing order of start time: assign lecture 
to any compatible classroom. 

12

!"#$%&#'#'("({+,, .,}) // 1 ← 0 # of allocated rooms
1. Sort by starting time so that +4 ≤ +6 ≤ ⋯ ≤ +8
2. For 9 = 1,… , =

If  9 compatible with some classroom >
Schedule 9 in room >

Else allocate new classroom 1 + 1
Schedule 9 in room 1 + 1
1 ← 1 + 1

§Optimality. #Rm allocated = depth of input intervals 

OBS. # rm needed ≥
depth of input intervals 
(i.e., Max. number of 
lectures that overlap)§ Running time. A = log =

How to do it in A(log 1)


