F,09/26/19

--

Fall’'19 CSCE 629 Lecture 12

Analysis Of * Longest common subsequence
Algorithms

__

--

Fang Song
Texas A&M U

__

Credit: based on slides by A.Smith and K.Wayne

Logistics

= Monday 09/30

* Recitation by TA on HW problems
* Office hours rescheduled: Tuesday 10/01 1:30pm — 3:30pm

* Mid-term
* Take home
* When: week 7 (release after|10/09 due M 10/14)
* Practice problems will be posted ahead of time
* Submission: scan of clear hand-writing accepted
* No collaboration of any form (e.g., Google) permitted
* More to be announced

Longest common subsequence (LCS)

" Input. Two subsequences x[1, ...,m] and y[1, ..., n]
= Output. A subsequence common to both.

xx A B CBDAUZB

A=~

y: B D CAUBA

= Other names you may heard of

* Sequence alignment
« Edit distance:n — lenth(LCS(x,y))

Motivation

» String matching [Levenshtein 1965] aigoritm
e Auto corrector
* Spell checker
o Speech recognition About 2,960,000 results (0.75 second
 Machine translation Did you mean: algorithm

Q Al [Images [& Maps [

= Computational biology [Needleman-Wunsch, 1970’s]

* simple measure of genome similarity

ACGTACGTACGTACGTACGTACGTATCGTACGT
AACGTACGTACGTACGTACGTACGTACGTACGT

ACGTACGTACGTACGTACGTACGTA T ATCGTACGT
— AACGTACGTACGTACGTACGTACGTA ATCGTACGT

DP1: develop a recursion

" Input. Two subsequences x[1, ...,m] and y[1, ..., n]

= Qutput. A longest subsequence common to both.

* (Simplification) Look at the length of a longest-common subsequence
* Extend the algorithm to find the LCS itself

Notation. Denote the length of a sequence s by |s|.

Def. c(i,j) :== |LCS(x[1, ...,i], y[1, ..., jD|

» Goal. Find c(m, n)

= Basis: c(i,j) =0ifi=00rj=0

= Recursion: how to define c(i, j) recursively?

DP1: develop a recursion

" Casel: x|i] = y[J] c(i,)=cli-1,j—1)+1

» Case2: x|i] # y[j]l c(,j) = max{c[i —1,/],c[i,j — 1]}
1 2 3

l m
X
1 2 3 \?j n
y:
‘ 0 ifi=0o0rj=0
= < ci—1,7—1)+1 ifx[i] = x[j]

\

max {c(i —1,j),c(i,j — 1)}if x[i] # x[/j]

DP2: build up solutions

x 0 [c | eo—————— = Subproblems: 0(mn)

» Memoization data struture
* 2-D array [0, ...m, 0, ..., n]

= Dependencies

* Each c(i,j) depends on its three neighbors
; . c(i—1,j—1,c@i,j—1,c(i—1j))
= Evaluation order

* Left-to-right, row by row

DP2: build up solutions

i |

m

" Running time: O0(mn)

LCSLen (x[1,...m],y[1,...,n])
// c(i, j) memoize subproblem values
Forj=0,..,n
cl0,j] « O
Fori=1,..,m// row by row
cli,0] « 0O
Forj =,...,n //left to right
Ifx[i] = y[j]
c(i,j)=ci—1,j—1)+1
Else
c(i,j) = max{c(i,j —1),c(i —1,j)}

Example
y ABCBDAB

2

1

1
1

001

x10]0[0]0|0|0|0]|O0

B|{O|O|1

A O

< 0o I

DP3: constructing an optimal solution

» Reconstruct LCS by tracing backwards y A DB
X10]0/0(0[0|0]|0|0
LCS(x,y) = BCBA Bllojoft|1]1[1]1]1
NB. Multiple solutions are possible. D001 1/1/2/2)2
olo]1]2]2]2]2]2
AlO[1][1]2]2]2]3]3
0/1]2(2[3]|3|3|4
, 0(1(2(2|3|3[4|4

= Space: 0(mn)

* Can you do it in min{m, n}? (Hint: divide and conquer)

Further development

[MasekPaterson’JCSS1980] O (n?/logn) A Faster Algorithm Computing String Edit Distances*

How about 0 (n'°979)2
Quadratic Barrier

- Edit Distance Cannot Be Computed
—EBJ%ZF@GZOJ% in Strongly Subquadratic Time

(unless SETH is false)

[BEG’SODA2018] [HRS'STOC2019]

Approximating Edit Distance in Truly Subquadratic Time: Quantum Near-Linear Time Insertion-Deletion Codes and
and MapReduce™ (1+¢)-Approximating Edit Distance via Indexing

[CDGKSFOCS2018]
et o ot [BGHS'STOC2019]

Approximating Edit Distance Within Constant Factor in Truly Sub-Quadratic Time 1+ € Approximation of Tree Edit Distance in Quadratic Time'"

