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Dynamic Programming history

= Richard Bellman

- DP [1953] (@RAND)

* B-Ford alg. for general shortest
path (stay tuned!),

* Curse of dimensionality...

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time £ is determined by a
7 set of quantities which we call state parameters, or state variables.

* Etymology
* Dynamic programming = planning over time (by filling a table)
* Secretary of Defense was hostile to mathematical research
* Bellman sought an impressive name to avoid confrontation

"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to”
Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.



Dynamic Programming applications

Indispensable technique for problems
Many solutions, each has a value
= Areas Goal:a solution w. optimal (min or max) value

* Computer science: theory, graphics,Al, compilers, systems, ...
* Bioinformatics
* Operations research, information theory, control theory

= Some famous DP algorithms
* Avidan—Shamir for seam carving
* Unix diff for comparing two files
* Viterbi for hidden Markov models
* Knuth—Plass for word wrapping text in TeX.
* Cocke—Kasami—Younger for parsing context-free grammars



Dynamic Programming

= Break up a problem into a series of overlapping subproblems

* There is an ordering on the subproblems, and a relation showing
how to solve a subproblem given answers to “smaller”
subproblems (i.e., those appear earlier in the ordering)

An implicit DAG: nodes=subproblems, edges = dependencies

* Our examples on shortest path in DAGs and longest increasing subsequence
actually have many ideas wrapped ...



Fibonacci sequence

__________________________________________________________________________________________________________________________________

Det. Fibonacci sequence | 0,1,1,2,3,5,8,13,21,34, ... Leonardo of Pisa (Fibonacci)

0 1170 = 1250
Ag =

o |
Input. n g =1

= Output. a, ay=1

A = Ap—q T ay 2 |
= A simple recursivealg. ... S | i

Fib(n) = Correctness v
l. If n =0, return 0 - Running time?
Q. Ifn =1, return 1 T(n) =T(n—1) +T(n—2) + 0(1)

3. return Fib(n — 1) + Fib(n — 2
( ) ( ) Exercise. Show that T(n) = 20

» Can we do better?



A “dumb” recursion

Lots of redundancy! Only n — 1 distinct subproblems

an
‘/an_l\ (/an_z\)
an—z an—3 an—3 an—4

Why recursion in divide-&-conquer works great?
© independent & significantly smaller subproblems



A “smart” recursion by memoization

SmartFib(n) /\
// al0, ..., n] store subproblem values
from recursive calls /\ L/ar-z\A

. If n =0, return 0

1
2. Ifn =1, return 1 A A A K
3

. Else An-3 An—4 Qn-4 An-5 Qdn—4 An-5 Qn-s

If a|n] not defined
a[n] « SmartFib(n — 1) + SmartFib(n — 2)
return a|n|

* Running time. Linear 0(n)

= Track the recursion tree: Fill up af...] bottom up



Fill it deliberately

IterFib(n) * DP is about smart recursion

// a0, ..., n] store subproblem values (i.e. without repetition) top-

1 af0] <0 down

2. all] <1 * Usually easy to express by

3. Fori=2,..,n building up a table iteratively
aln] «a(n — 1) +a(n—2) (bottom-up)

4. return a|n] R — ,

= 0(n) additions. """ @@@

= Space for storing O(n) integers
* Can you save space!



Weighted interval scheduling

= Input. n jobs; job j starts at s;, finishes at f;, weight w;
= Output. Subset of mutually compatible jobs of maximum weight

i.e., they don’t overlap

Assuming all w; =1,
{b, e, h} is an optimal soln.




Weighted interval scheduling

Notation. Label jobs by tme fi <f, <--<f,
Def. = index i < j such that i is with j

1(b) éi.e.,latestjob before j & compatible with j
’ Z(C) éEx.pre(8)=5;pre(7)=3;pre(2)=0
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Forming the recursion for optimal solution

Notation. OPT(j) = value of optimal solution to jobs 1,2, ..., j
Casel. OPT(j) does NOT select job j OPT(n): value of optimal

. : ) soln. to initial problem
* Must include optimal solution to subproblem

consisting of remaining compatible jobs 1,2, ...,j — 1

Case2. OPT(j) selects job j
* Collect profit w;j; exclude incompatible jobs {pre(j) + 1,pre(j) + 2, ...,j — 1}
* Include optimal solution to subproblem of remaining compatible jobs 1,2, ..., pre(j)

0 ifj=0
max{OPT(j — 1), w; + OPT(pre(j))} otherwise
\ ]| J
| |
Case 1 Case 2

OPT(j) =
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“Dumb” recursion

" Input. n, Sq, ..., Spy fas oo froo Wi, oo, Wy
* Output. OPT(n)

// Sort by finishing time sothat f; < f, < < f,
// Compute pre(1),pre(2), ...,pre(n)
ComputeOPT())
1. Ifj =0

return 0
2. Else

return max{ComputeOPT(j — 1),w; + C omputeOPT(pre(j))}

* Running time ComputeOPT (n)?
* !l Exponential(n)
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“Smart ” recursion by memoization

Memoization. Store results of subproblems in a table; lookup as needed.

// Sort by finishing time sothat f; < f, <+ < f,

// Compute pre(1),pre(2), ..., pre(n)

// M|0, ...,n] store subproblem values; M[0] = 0 others initialize to NULL
M—ComputeOPT(j)

1. M[1]=0

2. If M[j] = NULL

= max{M—ComputeOPT(j — 1),w; + M—ComputeOPT (pre()))}
3. return M|j]

* Running time M—ComputeOPT (n)?
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Bottom-up dynamic programming

// Sort by finishing timesothat f; < f, <+ < f,
// Compute pre(1),pre(2), ..., pre(n) O(nlogn)
// M|0, ...,n] store subproblem values; initialize to 0

IterM—-C omputeOPT( n)
1. Forj=1,. previously computed values

M[j] = max{MU =1], wj + M[pre(])]} } 0(n)
. return M|n]

* Running time? O (nlog n)

= How to find a optimal solution (rather than just its value)?

= \What lessons we’'ve learned?
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