CSCE629 Analysis of Algorithms
Homework 5

Texas A&M U, Fall 2019 09/27/19
Lecturer: Fang Song Due: 10am, 10/04/19
Instructions.

e Typeset your submission by IXIEX, and submit in PDF format. Your solutions will
be graded on correctness and clarity. You should only submit work that you believe
to be correct, and you will get significantly more partial credit if you clearly identify
the gap(s) in your solution. You may opt for the “I'll take 15%" option (details in
Syllabus).

¢ You may collaborate with others on this problem set. However, you must write up
your own solutions and list your collaborators and any external sources for each
problem. Be ready to explain your solutions orally to a course staff if asked.

e For problems that require you to provide an algorithm, you must give a precise
description of the algorithm, together with a proof of correctness and an analysis of
its running time. You may use algorithms from class as subroutines. You may also
use any facts that we proved in class or from the book.

This assignment contains 3 questions, 4 pages for the total of 40 points and 10 bonus
points. A random subset of the problems will be graded.



1. (20 points) (Longest forward-backward contiguous substring) Describe and analyze
an efficient algorithm to find the length of the longest contiguous substring that
appears both forward and backward in an input string T[1,...,n]. The forward and
backward substrings must NOT overlap. Here are several examples.

Given the input string ALGORITHM, your algorithm should return 0.

Given the input string RECURSION, your algorithm should return 1, for the
substring R.

Given the input string REDIVIDE, your algorithm should return 3, for the sub-
string EDI. (The forward and backward substrings must not overlap!)

Given the input string DYNAMICPROGRAMMINGMANYTIMES, your algorithm should
return 4, for the substring YNAM. (It should not return 6, for the subsequence
YNAMIR, because it’s not contiguous.).




2. (20 points) (Word segmentation) If English were written without spaces, then we
need to infer likely boundaries between consecutive words in the text. This is called
word segmentation. For example, given meetateight, you can probably decide that
the best segmentation is meet jat_eight. (and not me_et at eight, or meet ate ight.
This is all the more relevant in languages like Chinese and Japanese, which are written
without spaces between the words.

How could we automate this process? A simple approach that is at least reasonably
effective is to find a segmentation that maximizes the cumulative “quality” of its
individual constituent words. Thus, suppose you are given a black box that, for any
string of letters x = x1x;...x,, will return a number quality(x). This number can
be either positive or negative; larger numbers correspond to more plausible English
words. (So quality(me) would be positive, while quality(ght) would be negative.)

Given a long string of letters y = y1y2 ...y, a segmentation of y is a partition of
its letters into contiguous blocks of letters; each block corresponds to a word in the
segmentation. The total quality of a segmentation is determined by adding up the
qualities of each of its blocks. (So we’d get the right answer above provided that
quality(meet) + quality(at) + quality(eight) was greater than the total quality of any
other segmentation of the string.)

Descrive and analyze an efficient algorithm that takes a string y and computes a
segmentation of maximum total quality. (You can treat a single call to the black box
computing quality() as a single computational step.)



3. (10 points (bonus)) (Greedy matrix-chain multiplication?) As suggested in class, one
approach to choosing the matrix Ay at which to split the subproduct A;A;,1... A is
by selecting k to minimize the quantity d; 1dd;. Does this always give an optimal
solution. Prove it or give a counterexample (i.e., an instance of the matrix-chain
multiplication problem for which this greedy approach yields a suboptimal solution.)



