
CSCE629 Analysis of Algorithms

Homework 2
Texas A&M U, Fall 2019 09/06/19
Lecturer: Fang Song Due: 10am, 09/13/19

Instructions.

• Typeset your submission by LATEX, and submit in PDF format. Your solutions will
be graded on correctness and clarity. You should only submit work that you believe
to be correct, and you will get significantly more partial credit if you clearly identify
the gap(s) in your solution. You may opt for the “I’ll take 15%” option (details in
Syllabus).

• You may collaborate with others on this problem set. However, you must write up
your own solutions and list your collaborators and any external sources for each
problem. Be ready to explain your solutions orally to a course staff if asked.

• For problems that require you to provide an algorithm, you must give a precise
description of the algorithm, together with a proof of correctness and an analysis of
its running time. You may use algorithms from class as subroutines. You may also
use any facts that we proved in class or from the book.

This assignment contains 5 questions, 5 pages for the total of 70 points and 15 bonus
points. A random subset of the problems will be graded.

1. (More asymptotics)

(a) (5 points) Prove that for any positive numbers a, b > 0, we have nb = ω(loga(n)).
There are several ways to approach this. One way is to use L’Hospital’s rule for
evaluating limits together with the following fact: f (n) = ω(g(n)) if and only if
limn→∞

f (n)
g(n) = +∞.

(b) (5 points) Prove or disprove: If h(n) = dn log(n)e, then n = Θ(h(n)/ log h(n)).

1



2. (Recurrence) Solve the following recurrences.

(a) (5 points) A(n) = 2A(n/4) +
√

n

(b) (5 points) B(n) = 2B(n/4) + n

(c) (5 points) C(n) = 3C(n/3) + n2

(d) (5 points (bonus)) D(n) =
√

nD(
√

n) + n

2



3. (10 points) (Domain transformation) We analyzed the running time of Mergesort by
the recurrence T(n) = 2T(n/2) + O(n). The actual Mergesort recurrence is somewhat
messier:

T(n) = T(dn/2e) + T(bn/2c) + O(n) .

We’ll justify in this problem that ignoring the ceilings and floors in a recurrence is
okay afterall using a technique called domain transformation.

First, because we are deriving an upper bound, we can safely overestimate T(n), once
by pretending that the two subproblem sizes are equal, and again to eliminate the
ceiling:

T(n) ≤ 2T(dn/2e) + n ≤ 2T(n/2 + 1) + n .

Second, we define a new function S(n) = T(n + α) for some α. You are to complete
the second step. Show that you can find a nice α so that S(n) ≤ 2S(n/2) + O(n)
does hold, and conclude from there that T(n) = O(n log n).

[Exercise (Do not turn in). Show how to remove floors by similar arguments.]

3



4. (Quicksort) We were not precise about the running time of Quicksort in class (for a
good reason). We will give some case studies in this problem (and appreciate the
subtlety).

(a) (10 points) Given an input array of n elements, suppose we are unlucky and the
partitioning routine produces one subproblem with n− 1 elements and one with
0 element. Write down the recurrence and solve it. Describe an input array that
costs this amount of running time to get sorted by Quicksort.

(b) (5 points) Now suppose that the partitioning always produces a 9-to-1 propor-
tional split. Write down the recurrence for T(n) and solve it.

(c) (5 points) What is the running time of Quicksort when all elements of the input
array have the same value?

4



5. (Sumerians’ multiplication algorithm) The clay tablets discovered in Sumer led some
scholars to conjecture that ancient Sumerians performed multiplication by reduction
to squaring, using an identity like

x · y = (x2 + y2 − (x− y)2)/2 .

In this problem, we will investigate how to actually square large numbers.

(a) (7 points) Describe a variant of Karatsuba’s algorithm that squares any n-digit
number in O(nlog 3) time, by reducing to squaring three dn/2e-digit numbers.
(Karatsuba actually did this in 1960.)

(b) (8 points) Describe a recursive algorithm that squares any n-digit number in
O(nlog3 6) time, by reducing to squaring six dn/3e-digit numbers.

(c) (10 points (bonus)) Describe a recursive algorithm that squares any n-digit num-
ber in O(nlog35) time, by reducing to squaring only five (n/3 + O(1))-digit
numbers. [Hint: What is (a + b + c)2 + (a− b + c)2?]

5


