
CSCE629 Analysis of Algorithms

Homework 12
Texas A&M U, Fall 2019 11/12/19
Lecturer: Fang Song Due: 10am, 12/02/19

Instructions.

• Typeset your submission by LATEX, and submit in PDF format. Your solutions will
be graded on correctness and clarity. You should only submit work that you believe
to be correct, and you will get significantly more partial credit if you clearly identify
the gap(s) in your solution. You may opt for the “I’ll take 15%” option.

• You may collaborate with others on this problem set. However, you must write up
your own solutions and list your collaborators and any external sources for each
problem. Be ready to explain your solutions orally to a course staff if asked.

• For problems that require you to provide an algorithm, you must give a precise
description of the algorithm, together with a proof of correctness and an analysis of
its running time. You may use algorithms from class as subroutines. You may also
use any facts that we proved in class or from the book.

• If you describe a Greedy algorithm, you will get no credit without a formal proof
of correctness, even if your algorithm is correct.

This assignment contains 5 questions, 4 pages for the total of 50 points and 3 bonus points.
A random subset of the problems will be graded.

Exercises. Do not turn in.

1. (Hat-check) Each of n customers gives a hat to a hat-check person at a restaurant. The
hat-check person gives the hats back to the customers in a uniformly random order.
What is the expected number of customers who get back their own hat?

2. (Streaks) Suppose you flip a fair coin n times. What is the longest streak of consecutive
heads that you expect to see?

1



Problems to turn in.

1. (Happy holidays) This time of year is here, you known, holidays, and everyone is
facing various (joyful) challenges.

(a) (10 points) For Kevin (character in movie “Home Alone”), he is handed n pieces
of candy with weights W[1, . . . , n] (in ounces) that he needs to load into boxes.
The goal is to load the candy into as many boxes as possible, so that each box
contains at least L ounces of candy. Help Kevin solve this by describing an effi-
cient 2-approximation algorithm for this problem. Prove that the approximation
ratio of your algorithm is 2. [Hint: First consider the case where every piece of
candy weighs less than L ounces.]

(b) (10 points) For Juliet, this means that she needs to fulfill Romeo’s wishlist - n
Nintendo R© Switch games. She happened to notice that in a personal care and
beauty store AROHPES, her favorite lip balm includes a 99% discount code for
one of the n games Romeo wants. However, the code is hidden at the bottom
of the package, which Juliet cannot tell before purchasing and opening it, and
the code comes in random so that it is equally likely to be good for any of the n
games. She intends to purchase sufficient lip balms, which she likes and needs
anyways, so she gets discount codes for all n games. How many lip balms does
she need to buy in expectation before getting a code for each game?

(c) (3 points (bonus)) Continuing from Part (b), it’s 7 days till Thanksgiving now.
Due to popularity, AROHPES limits the number of this particular lip balms one
can purchase in a day to 6. She convinced Romeo to reduce his demand to 10
games. Can Juliet succeed in collecting all discount codes by Thanksgiving?
[Hint: look up Markov’s inequality]

2



2. (12 points) (3-Coloring) Suppose you are given a graph G = (V, E), and we want to
color each node with one of three colors, even if we aren’t necessarily able to give
different colors to every pair of adjacent nodes. We say an edge (u, v) is satisfied if
the colors assigned to u and v are different.

Consider a coloring scheme that maximizes the number of satisfied edges, and let c∗

denote this number. Give a poly-time algorithm that produces a coloring that satisfies
at least 2

3 c∗ edges. If you want to use an randomized algorithm, the expected number
of edges it satisfies should be at least 2

3 c∗.

3



3. (Errors in randomized algorithms) Suppose you want to write a computer program C
to compute a Boolean function f : {0, 1}n → {0, 1}, mapping n bits to 1 bit. If C is a
deterministic algorithm, then “C successfully computes f ” has a clear meaning that
that C(x) = f (x) for all inputs x ∈ {0, 1}n. But what if C is a randomized algorithm?

(a) (8 points) The best thing is if C is a zero-error algorithm with failure probability
p. Namely

• on every input x, the output of C(x) is either f (x) or ⊥ (denoting failure).
• on every input x we have Pr[C(x) =⊥] ≤ p (NB. the probability is only over

the internal randomness of C, not the random choice of x.).

i) If you have a zero-error algorithm C for f with failure probability 90%, show
how to convert it to a zero-error algorithm C′ with failure probability at most
2−500. The “slowdown” should only be a factor of a few thousand.

ii) Alternatively, show how to convert C to an algorithm C′′ for f which: (i)
always outputs the correct answer, meaning C′′(x) = f (x) for all x; (ii) has
expected running time only a few powers of 2 worse than that of C. (Hint:
look up the mean of a geometric random variable.)

(b) (5 points) The second best thing is if C is a one-sided error algorithm for f , with
failure probability p. There are two kinds of such algorithms, “no-false-positives”
and “no-false-negatives”. For simplicity, let’s just consider “no false-negatives”
(the other case is symmetric);

• on every input x, the output C(x) is either 0 or 1;
• on every input x such that f (x) = 1, the output C(x) is also 1;
• on every input x such that f (x) = 0, we have Pr[C(x) = 1] ≤ p.

Show how to convert a no-false-negatives algorithm C for f with failure probabil-
ity 90% to another no-false-negatives algorithm C′ for f with failure probability
at most 2−500. The “slowdown” should only be a factor of a few thousand.

(c) (5 points) The third possibility (which is rare in practice) is if C is a two-sided
error algorithm for f , with failure probability p. Namely,

• on every input x, the output C(x) is either 0 or 1.
• on every input x, we have Pr[C(x) 6= f (x)] ≤ p.

If you have a two-sided error algorithm C for f with failure probability 40%,
show how to convert it to a two-sided error algorithm C′ for f with failure
probability at most 2−500. The “slowdown” should only be a factor of a few
dozen thousand. (Hint: look up the Chernoff bound.)

4


