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several Hamiltonian cycles; one visits the nodes in the order 1, 6, 4, 3, 2, 5, 1,
while another visits the nodes in the order 1, 2, 4, 5, 6, 3, 1.

The Hamiltonian Cycle Problem is then simply the following:

Given a directed graph G, does it contain a Hamiltonian cycle?

Proving Hamiltonian Cycle is NP-Complete
We now show that both these problems are NP-complete. We do this by first
establishing the NP-completeness of Hamiltonian Cycle, and then proceeding
to reduce from Hamiltonian Cycle to Traveling Salesman.

(8.17) Hamiltonian Cycle is NP-complete.

Proof. We first show that Hamiltonian Cycle is in NP. Given a directed graph
G = (V , E), a certificate that there is a solution would be the ordered list of
the vertices on a Hamiltonian cycle. We could then check, in polynomial time,
that this list of vertices does contain each vertex exactly once, and that each
consecutive pair in the ordering is joined by an edge; this would establish that
the ordering defines a Hamiltonian cycle.

We now show that 3-SAT ≤P Hamiltonian Cycle. Why are we reducing
from 3-SAT? Essentially, faced with Hamiltonian Cycle, we really have no idea
what to reduce from; it’s sufficiently different from all the problems we’ve
seen so far that there’s no real basis for choosing. In such a situation, one
strategy is to go back to 3-SAT, since its combinatorial structure is very basic.
Of course, this strategy guarantees at least a certain level of complexity in the
reduction, since we need to encode variables and clauses in the language of
graphs.

So consider an arbitrary instance of 3-SAT, with variables x1, . . . , xn and
clauses C1, . . . , Ck. We must show how to solve it, given the ability to detect
Hamiltonian cycles in directed graphs. As always, it helps to focus on the
essential ingredients of 3-SAT: We can set the values of the variables however
we want, and we are given three chances to satisfy each clause.

We begin by describing a graph that contains 2n different Hamiltonian
cycles that correspond very naturally to the 2n possible truth assignments to
the variables. After this, we will add nodes to model the constraints imposed
by the clauses.

We construct n paths P1, . . . , Pn, where Pi consists of nodes vi1, vi2, . . . , vib
for a quantity b that we take to be somewhat larger than the number of clauses
k; say, b= 3k + 3. There are edges from vij to vi, j+1 and in the other direction
from vi, j+1 to vij. Thus Pi can be traversed “left to right,” from vi1 to vib, or
“right to left,” from vib to vi1.
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Figure 8.7 The reduction from 3-SAT to Hamiltonian Cycle: part 1.

We hook these paths together as follows. For each i = 1, 2, . . . , n − 1, we
define edges from vi1 to vi+1,1 and to vi+1,b. We also define edges from vib to
vi+1,1 and to vi+1,b. We add two extra nodes s and t; we define edges from s
to v11 and v1b; from vn1 and vnb to t; and from t to s.

The construction up to this point is pictured in Figure 8.7. It’s important
to pause here and consider what the Hamiltonian cycles in our graph look like.
Since only one edge leaves t, we know that any Hamiltonian cycle C must use
the edge (t , s). After entering s, the cycle C can then traverse P1 either left to
right or right to left; regardless of what it does here, it can then traverse P2
either left to right or right to left; and so forth, until it finishes traversing Pn
and enters t. In other words, there are exactly 2n different Hamiltonian cycles,
and they correspond to the n independent choices of how to traverse each Pi.
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This naturally models the n independent choices of how to set each vari-
ables x1, . . . , xn in the 3-SAT instance. Thus we will identify each Hamiltonian
cycle uniquely with a truth assignment as follows: If C traverses Pi left to right,
then xi is set to 1; otherwise, xi is set to 0.

Now we add nodes to model the clauses; the 3-SAT instance will turn out
to be satisfiable if and only if any Hamiltonian cycle survives. Let’s consider,
as a concrete example, a clause

C1= x1∨ x2 ∨ x3.

In the language of Hamiltonian cycles, this clause says, “The cycle should
traverse P1 left to right; or it should traverse P2 right to left; or it should traverse
P3 left to right.” So we add a node c1, as in Figure 8.8, that does just this. (Note
that certain edges have been eliminated from this drawing, for the sake of
clarity.) For some value of �, node c1 will have edges from v1�, v2,�+1, and
v3�; it will have edges to v1,�+1, v2,�, and v3,�+1. Thus it can be easily spliced
into any Hamiltonian cycle that traverses P1 left to right by visiting node c1
between v1� and v1,�+1; similarly, c1 can be spliced into any Hamiltonian cycle
that traverses P2 right to left, or P3 left to right. It cannot be spliced into a
Hamiltonian cycle that does not do any of these things.

More generally, we will define a node cj for each clause Cj. We will reserve
node positions 3j and 3j + 1 in each path Pi for variables that participate in
clause Cj. Suppose clause Cj contains a term t. Then if t = xi, we will add
edges (vi,3j , cj) and (cj , vi,3j+1); if t = xi, we will add edges (vi,3j+1, cj) and
(cj , vi,3j).

This completes the construction of the graph G. Now, following our
generic outline for NP-completeness proofs, we claim that the 3-SAT instance
is satisfiable if and only if G has a Hamiltonian cycle.

First suppose there is a satisfying assignment for the 3-SAT instance. Then
we define a Hamiltonian cycle following our informal plan above. If xi is
assigned 1 in the satisfying assignment, then we traverse the path Pi left to
right; otherwise we traverse Pi right to left. For each clause Cj, since it is
satisfied by the assignment, there will be at least one path Pi in which we will
be going in the “correct” direction relative to the node cj, and we can splice it
into the tour there via edges incident on vi,3j and vi,3j+1.

Conversely, suppose that there is a Hamiltonian cycle C in G. The crucial
thing to observe is the following. If C enters a node cj on an edge from vi,3j,
it must depart on an edge to vi,3j+1. For if not, then vi,3j+1 will have only one
unvisited neighbor left, namely, vi,3j+2, and so the tour will not be able to
visit this node and still maintain the Hamiltonian property. Symmetrically, if it
enters from vi,3j+1, it must depart immediately to vi,3j. Thus, for each node cj,
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Figure 8.8 The reduction from 3-SAT to Hamiltonian Cycle: part 2.

the nodes immediately before and after cj in the cycle C are joined by an edge e
in G; thus, if we remove cj from the cycle and insert this edge e for each j, then
we obtain a Hamiltonian cycle C′ on the subgraph G − {c1, . . . , ck}. This is our
original subgraph, before we added the clause nodes; as we noted above, any
Hamiltonian cycle in this subgraph must traverse each Pi fully in one direction
or the other. We thus use C′ to define the following truth assignment for the
3-SAT instance. If C′ traverses Pi left to right, then we set xi = 1; otherwise we
set xi = 0. Since the larger cycle C was able to visit each clause node cj, at least
one of the paths was traversed in the “correct” direction relative to the node
cj, and so the assignment we have defined satisfies all the clauses.


