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Which problems have  faster |quantum〉 
algorithms than classical algorithms? 

(Number theory problems are a good source) 

∃ Poly-time quantum algorithms for:   

 Factoring and discrete logarithm [Shor’94] 

  Unit group in number fields 

Degree two fields (Pell’s equation as a special case) [Hallgren’02] 

 Constant-degree [Hallgren’05,SchmidtVollmer’05] 

 Principal Ideal Problem (PIP) and class group computation 

 Constant degree number fields [H’02’05,SV’05] 

 

 

THIS WORK: arbitrary-degree 
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Best known classical algorithms need super-polynomial time 
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All these quantum alg’s fall into the framework of 

Hidden Subgroup Problem (HSP) 

 Reduction & Algorithm for HSP both need to be efficient.  

Problem Π 

INPUT 

Solution to Π 

OUTPUT 
HSP on a 
group 𝐺 

(Classical) 
Reduction 

Quantum 
Algorithm 
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Existing algorithms for constant-degree unit finding 
[H’02’05,SV05] 

Difficulty of extending to high degrees 
• Reduction takes exponential time in degree. 
• HSP instance in high dimension hard to solve. 

Constant degree 
number field 

INPUT 

Units of the 
number field 

OUTPUT 

HSP on ℝ𝑐𝑜𝑛𝑠𝑡 

Classical 
Reduction 

Quantum 
Algorithm 
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Existing algorithms for constant-degree unit finding 
[H’02’05,SV05] 

Our algorithm for arbitrary-degree unit finding 

Arbitrary degree 
𝑛 number field 

INPUT 

Units of the 
number field 

OUTPUT 

Quantum 
Reduction 

New Quantum 
Algorithm 

HSP* on ℝ𝑂(𝑛) 

*New definition:  
Continuous HSP 

HSP on ℝ𝑐𝑜𝑛𝑠𝑡 
Constant degree 

number field 

INPUT 

Units of the 
number field 

OUTPUT 

Classical 
Reduction 

Quantum 
Algorithm 

① ② 

③ ④ 



 Quantum algorithms can break classical crypto-systems 

Anything based on factoring/D-Log [Shor94]: e.g. RSA encryption… 

 Buchmann-Williams key exchange (based on degree-two PIP) [H’02] 

 

 OPEN QUESTION: quantum attacks on (ideal) lattice based crypto 

 Fully homomorphic encryption, code obfuscation, and more 
[Gentry09,SmartV’10,GGH+13…] 

Our alg. deals with similar objects: ideal lattices in number fields 

A classical approach [Dan Bernstein Blog 2014] 

• A key component: computing units in classical sub-exp. time 

 This part becomes (quantum) poly-time by our alg.   

Quantum Attacks on Classical Cryptography 

6 



Roadmap of Our Algorithm 
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HSP* on ℝ𝑶(𝒏) 
Arbitrary degree 
𝑛 number field 

INPUT 

Units of the 
number field 

OUTPUT 

Quantum 
Reduction 

New Quantum 
Algorithm 

* New definition:  
Continuous HSP 

① ② 

③ ④ 



Review: Hidden Subgroup Problem (HSP) 
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𝐻 

𝑥 + 𝐻 
𝑓 

𝐺 𝑆 

𝑠0 

𝑠1 

𝑠𝑘 𝑦 + 𝐻 

 Finite Group 𝐺 

 Extend the definition to infinite group ℤ𝑚   

 Extend to uncountable group ℝ𝑚: non-trivial!  

An issue with discretization 
 Assume 𝑓: ℝ → 𝑆 periodic with period 𝑟 ∈ ℝ. 
 Digital computers can only evaluate 𝑓 on a discrete grid 𝛿ℤ. 

𝑓𝛿 ≜ 𝑓|𝛿ℤ: 𝛿ℤ → 𝑆  

Given: oracle function 𝑓: 𝐺 → 𝑆, s.t. ∃ 𝐻 ≤ 𝐺, 
1. (Periodic on 𝐻)  

𝑥 − 𝑦 ∈ 𝐻 ⇒ 𝑓 𝑥 = 𝑓 𝑦  

2. (Injective on 𝐺/𝐻)  
𝑥 − 𝑦 ∉ 𝐻 ⇒ 𝑓 𝑥 ≠ 𝑓(𝑦) 

Goal: Find (hidden subgroup) 𝐻.  

may lose HSP properties  
(e.g. periodic)! 𝛿  

𝑓(𝑘𝑟) 

𝑟 ∈ ℝ 2𝑟 3𝑟 0 

𝑓𝛿(⌊𝑘𝑟⌉) 
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Define Continuous HSP on ℝ𝑚   

 Our definition (HSP on ℝ𝒎): make 𝑓 continuous 

 Previous definition: extra constraint on discrete 𝑓𝛿  

 E.g. pseudo-periodic [H’02]: 𝑓𝛿 𝑘𝑟 + 𝑥 = 𝑓𝛿 𝑥  for most 𝑥. 

Not suitable in high dimensions ℝ𝑚. 

Given 𝑓: ℝ𝑚 → ℋ (quantum states), s.t.: ∃ 𝐻 ≤ ℝ𝑚, 

1. (Periodic) 𝑥 − 𝑦 ∈ 𝐻 ⇒ |𝑓(𝑥)〉 = |𝑓(𝑦)〉. 

2. (Pseudo-injective) 

 min
𝑣∈𝐻

 ||𝑥 − 𝑦 − 𝑣|| ≥ 𝑟 ⇒ 𝑓 𝑥 𝑓 𝑦 ≤ 𝜖. 

“𝑥 − 𝑦 far from 𝐻 ⇒ 𝑓 𝑥 𝑓 𝑦  small” 

3. (Lipschitz) |||𝑓 𝑥 〉 − |𝑓 𝑦 〉|| ≤ 𝑎 ⋅ ||𝑥 − 𝑦||. 

“𝑥 − 𝑦 close to 𝐻 ⇒ 𝑓 𝑥 𝑓 𝑦  big” 

Goal: Find (hidden subgroup) 𝐻. 



∃ efficient 
quantum 

algorithms 

10 

Interesting HSP Instances 

Computational Problems Abelian HSP on 𝑮 

Discrete log → ℤ𝑁 × ℤ𝑁 

Factoring → ℤ 

Unit group, PIP, class group, 
constant degree 

→ ℝ𝑐𝑜𝑛𝑠𝑡 

[This Work]  
Unit group, arbitrary degree 𝑛 

→ 
 

ℝ𝑂(𝑛) 
[New Definition] 

? efficient alg. 
 (open question) 

Computational Problems Non-abelian HSP on 𝑮 

Graph isomorphism → Symmetric group 𝑆𝑛 

Unique shortest vector  → Dihedral group 𝐷𝑛 



Roadmap of Our Algorithm 
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HSP* on ℝ𝑶(𝒏) 
Arbitrary degree 
𝑛 number field 

INPUT 

Units of the 
number field 

OUTPUT 

Quantum 
Reduction 

New Quantum 
Algorithm 

* New definition:  
Continuous HSP 

① ② 

③ ④ 

` 



 Number Field 𝐾 ⊆ ℂ: Finite field extension of ℚ. 

 Ex. 1 (Quadratic field). Take 𝑑 ∈ ℤ, ℚ 𝑑 = 𝑎 + 𝑏 𝑑: 𝑎, 𝑏 ∈ ℚ . 

 Ex. 2 (Cyclotomic field). Take 𝜔 = 𝑒2𝜋𝑖/𝑝, 𝑝 prime. 
ℚ 𝜔 = 𝑎0 + 𝑎1𝜔 + ⋯ + 𝑎𝑝−2𝜔𝑝−2: 𝑎𝑖 ∈ ℚ . 

 Ring of Integers 𝒪: 𝐾 ∩ Roots of monic irreducible poly ℤ[𝑋]. 

 Group of Units 𝒪∗: invertible elements in 𝒪. 
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Number Field Basics 

𝐾 

𝒪 

𝒪∗ 

ℚ 

ℤ 

{±1} 

ℚ 𝑑 = {𝑎 + 𝑏 𝑑: 𝑎, 𝑏 ∈ ℚ} 

ℤ[ 𝑑] = {𝑎 + 𝑏 𝑑: 𝑎, 𝑏 ∈ ℤ} 

𝒪∗ = {±𝑢𝑘: 𝑘 ∈ ℤ} 

Field 

Ring of 
integers 

Unit group 

𝑑 = 109, 𝑢 = 158070671986249 + 15140424455100 109 
Exercise. Verify 𝑢𝑢−1  =  1.  
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Complexity of Computing Unit Group 

ℚ 𝑑 = 𝑎 + 𝑏 𝑑: 𝑎, 𝑏 ∈ ℚ , 𝒏 = 𝟐, 𝚫 ≈ 𝒅 

ℚ 𝜔 = 𝑎0 + 𝑎1𝜔 + ⋯ + 𝑎𝑝−2𝜔𝑝−2: 𝑎𝑖 ∈ ℚ , 𝒏 = 𝒑 − 𝟏, 𝚫 ≈ 𝒑𝒑 

Classical Quantum 

(Factoring) 

 [reduces to ℚ( 𝑑) case]  

exp( log Δ 1/3) poly(log Δ) 

ℚ 𝑑  exp( log Δ 1/2) poly(logΔ) 

ℚ 𝜔𝑝  exp(𝑛, log Δ) exp 𝑛 poly(log Δ) 

This work 
poly(𝑛, log Δ)  

 Previous algorithms for computing units 

 Two parameters for measuring computational complexity 

Degree 𝑛: dimension of 𝐾 as vector space over ℚ. 

Discriminant Δ: “size” of ring of integers. [more to come] 

Goal: computation in time poly(𝑛, log Δ).  



Roadmap of Our Algorithm 
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HSP* on ℝ𝑶(𝒏) 
Arbitrary degree 
𝑛 number field 

INPUT 

Units of the 
number field 

OUTPUT 

Quantum 
Reduction 

New Quantum 
Algorithm 

* New definition:  
Continuous HSP 

① ② 

③ ④ 



1. Identify 𝒪∗ as a subgroup in ℝ𝑚, 𝑚 = 𝑂(𝑛). 

 

2. Define 𝑓: ℝ𝑚 → ℋ satisfying HSP properties.  
 (Periodic) 𝑥 − 𝑦 ∈ 𝒪∗ ⇒ |𝑓(𝑥)〉 = |𝑓(𝑦)〉 

 (Pseudo-injective) 𝑥 − 𝑦 far from 𝒪∗ ⇒ 𝑓 𝑥 𝑓 𝑦  small 

 (Lipschitz) 𝑥 − 𝑦 close to 𝒪∗ ⇒ 𝑓 𝑥 𝑓 𝑦  big  

 

3. Compute 𝑓 by an efficient quantum algorithm. (omitted) 

15 

Outline of Quantum Reduction 
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Set Up Units as a Subgroup 

Lattice 𝐿(𝐵) = 𝑎1𝑣1 + ⋯ + 𝑎𝑛𝑣𝑛: 𝑎𝑖 ∈ ℤ ⊆ ℝ𝑛  

 Basis 𝐵: 𝑣𝑖 ∈ ℝ𝑛: 𝑖 = 1, … , 𝑛  

 𝐿 has (infinitely) many bases 

det 𝐿 : volume of fundamental domain 

 Discriminant of 𝒪: Δ = det2(𝒪) 

 

 

 

𝒪∗ ≤ ℝ𝑛−1 = 𝑢1, … , 𝑢𝑛 ∈ ℝ𝑛: ∑𝑢𝑖 = 0    

 Log coordinates of units: 𝑧 ∈ 𝒪∗ → 𝑧𝑖 ≠ 0 → write 𝑢𝑖 ≔ log|𝑧𝑖|  

 Fact: units have algebraic norm 1 

𝑧 ∈ 𝒪∗ → 𝒩 𝑧 = Π 𝑧𝑖 = 1 → ∑𝑢𝑖 = 0. 

 𝒪 is identified with a lattice 𝒪 in ℝ𝑛.  

 𝑧 ∈ 𝒪 ↦ 𝑧: = 𝑧1, … , 𝑧𝑛 ∈ ℝ𝑛 (conjugate vector representation) 

N.B.: Not precise; sign/phase info. missing! 
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Define Hiding Function: Classical Part 

lattices in ℝ𝑛  ℝ𝑛−1 𝑓: 
𝑓𝑐 

{quantum states} 
𝑓𝑞 

𝑓𝑐  
↦ Output: 𝐿𝑥 = 𝑒𝑥 𝒪 Input: 𝑥 = 𝑥1, … , 𝑥𝑛

𝑇 , ∑𝑥𝑖 = 0 

 Obs. 𝑓𝑐  preserves algebraic norm 𝒩 𝑧 = Π𝑧𝑘. 

 Example. 𝐾 = ℚ 𝑑 , 𝑑 ∈ ℤ+, 𝑛 = 2, 𝒪 ⊆ ℝ2. 

  ∀ 𝑣 = 𝑣1, 𝑣2
𝑇 ∈ 𝒪 

𝑒𝑥 𝑣 ≔ 𝑒𝑥𝑣1, 𝑒−𝑥𝑣2
𝑇 

𝑓𝑐:  𝑥, −𝑥 ↦ 𝑒𝑥 𝒪 

• Stretch/Squeeze each coordinate 
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Real Quadratic Example 

Courtesy of Hallgren. 

𝐿𝑥 ⊆ ℝ2 𝑥 ∈ ℝ 
𝑓𝑐  
↦ 

 ℚ 102 , 𝑛 = 2, 𝑓𝑐: ℝ → {lattices in ℝ2} 
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Properties of 𝑓𝑐 

𝒪∗-Periodic. (Fact: 𝑢 ∈ 𝒪∗ ⇒ 𝑢𝒪 = 𝒪) 

•If 𝑒𝑦 ∈ 𝒪∗, then 𝑒𝑥 +𝑦𝒪 = 𝑒𝑥 𝒪.  

 (Lipschitz)  “Small” shift in inputs  “Similar” lattices in outputs 

 (Pseudo-inj)  “Big” shift in inputs  “Far-apart” (small overlap) lattices  

! Computing 𝑓𝑐 delicate: 𝑒𝑥 doubly-exp. large & precision loss. 

𝑓𝑐: 𝑥 ↦ 𝐿 = 𝑒𝑥𝒪 

lattices in ℝ𝑛  ℝ𝑛−1 𝑓: 
𝑓𝑐 

{quantum states} 
𝑓𝑞 



 Issue: no unique representation for lattices in ℝ𝑛 

 𝑒𝑥 𝒪 = 𝑒𝑦𝒪 same lattice, but 𝑓𝑐(𝑥 ) and 𝑓𝑐(𝑦 ) different bases. 

 Fix: encode lattices in quantum states!  
 Superposition over all lattice points  
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Define Hiding Function: Quantum Encoding 

needed for Quantum HSP alg. 

lattices in ℝ𝑛  ℝ𝑛−1 𝑓: 
𝑓𝑐 

{quantum states} 
𝑓𝑞 

o 𝜌𝑠 ⋅ = 𝑒−𝜋||⋅||2/𝑠2
: wide Gaussian envelope 

o |str𝛿(𝑣)〉: straddle encoding of 𝑣 ∈ ℝ𝑛 

 Goal: str𝛿 𝑣 ≈ |str𝛿(𝑣′)〉 iff. 𝑣 ≈ 𝑣′   
 Naïve approach fails: .0001 .0002 = 0  

 

𝑓𝑞: 𝐿 ↦ 𝐿 = 𝛾∑𝑣∈𝐿𝜌𝑠(𝑣)|str𝛿(𝑣)〉 



 Straddle encoding a real number in a quantum state. 
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Quantum Straddle Encoding 

𝑘𝛿 
𝛿 

(𝑘 + 1)𝛿 𝑣 
𝒕 

str𝛿 𝑣 = cos 𝑡 𝑘 + sin 𝑡 |𝑘 + 1〉 

𝑣′ 

𝑘𝛿 
𝛿 

(𝑘 + 1)𝛿 𝑣 
𝑡 

𝑣′ 

𝑘𝛿 
𝛿 

(𝑘 + 1)𝛿 𝑣 
𝑡 𝑣′ 

• 𝑣 − 𝑣′ ≥ 2𝛿 
⇒ 〈str𝛿 𝑣′ str𝛿 𝑣 = 0  

• 𝑣 − 𝑣′  small  
⇒ 〈str𝛿 𝑣′ str𝛿 𝑣 ≈ 1 

𝑘 = 𝑥 𝛿 , 𝑡 = 𝑥 − 𝑘𝛿 

 Encode a vector in ℝ𝑛: coordinate-wise straddle encoding 
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Quantum Straddle Encoding: An Animation 
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Properties of 𝑓𝑞 

𝑓𝑞: 𝐿 ↦ 𝐿 = 𝛾∑𝜌𝑠 𝑣 str𝛿 𝑣  

 𝐿′ 𝐿 ∝ ∑ 〈str𝛿 𝑣′ str𝛿 𝑣𝑣∈𝐿,𝑣′∈𝐿′  

 

 

 𝐿 ≈ 𝐿′ ⇒ 𝐿′ 𝐿 ≈ 1 

 𝐿 & 𝐿′ small overlap ⇒ 𝐿′ 𝐿  small 

• ||𝑣 − 𝑣′|| small ⇒ 〈str𝛿 𝑣′ str𝛿 𝑣 ≈ 1 

• ||𝑣 − 𝑣′|| ≥ 2𝛿 ⇒ 〈str𝛿 𝑣′ str𝛿 𝑣 = 0  

lattices in ℝ𝑛  ℝ𝑛−1 𝑓: 
𝑓𝑐 

{quantum states} 
𝑓𝑞 
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Establish HSP Properties 

Theorem. 𝑓 = 𝑓𝑞 ∘ 𝑓𝑐  is periodic over 𝒪∗ with HSP properties.  

 (Lipschitz) 𝑥 − 𝑥′ close to 𝒪∗ 
𝑓𝑐
→  𝐿 ≈ 𝐿′ 

𝑓𝑞
→  𝐿′ 𝐿 ≈ 1 

 (P-Inj.) 𝑥 − 𝑥′ far from 𝒪∗
𝑓𝑐
→ 𝐿 & 𝐿′ small overlap 

𝑓𝑞
→ 𝐿′ 𝐿  small 

lattices in ℝ𝑛  ℝ𝑛−1 𝑓: 
𝑓𝑐 

{quantum states} 
𝑓𝑞 

 Applications of quantum straddle encoding 

A canonical representation for real-valued lattices.  

 Can reduce existing (abelian) HSP to our HSP on ℝ𝑚.  

 Invoke quantum HSP algorithm (next), we find 𝒪∗ efficiently! 



Roadmap of Our Algorithm 
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HSP* on ℝ𝑶(𝒏) 
Arbitrary degree 
𝑛 number field 

INPUT 

Units of the 
number field 

OUTPUT 

Quantum 
Reduction 

New Quantum 
Algorithm 

* New definition:  
Continuous HSP 

① ② 

③ ④ 



 Ideal world: 𝑓  peaked at dual of 𝐻, i.e. 𝑘/𝑟. 

 Reality: need to truncate and discretize 𝑓. 
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Solving HSP on ℝ𝑚: Main Idea 
Input: oracle function 𝑓 that hides  𝐻 ⊆ ℝ𝑚 

Real Domain 

 Goal: get samples that approximate the ideal Fourier spectrum  

Output: (Generators of) 𝐻? 

𝛿  

𝑓: ℝ → ℋ 

Fourier Spectrum 

ℱℝ 

0 1/𝑟 −1/𝑟 

𝑓 : ℝ → ℂ 

−𝑟 0 𝑟 
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Effect of Truncation 

ℱℝ 

𝑊 

Real Domain Fourier Spectrum 

 Mult./Convolution Duality: ℱ 𝑓𝑔 = 𝑓 ∗ 𝑔  
 

    
 

Truncation: multiply 𝑓 by window function 𝑊. 

Need a smooth window: 𝑤 𝑥 =  

1

𝑊/2
sin 𝜋𝑥/𝑊 , 𝑥 ∈ [0, 𝑊]

0, otherwise
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Effect of Discretization 

𝐷𝛿  

Real Domain Fourier Spectrum 

ℝ/𝛿ℤ 

𝑓 = 1 𝑓 = 𝛿(𝑥) Wrapping only causes small disturbance 

 𝑓 Lipschitz  𝑓  small tail 

⇒ 

 𝑓𝛿
 z =  𝑓 (𝑧 + 𝑘𝛿−1)

𝑘∈ℤ

  Poisson Summation Formula ⇒ 

Discretization: restrict 𝑓 on grid 𝛿ℤ, 𝑓𝛿 ≜ 𝑓|𝛿ℤ.  

𝛿  
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Quantum Algorithm for HSP on ℝ𝑚 

ℱℝ 

Ideal World 

𝐷𝛿 ∘ 𝑊 

ℱℤ 

 Our alg. samples from this 
spectrum (by phase estimation). 

Reality 

 Get “clean” sample w.p. 𝒪(
1

2𝑚).  

 Previous Algorithms 

 Our Algorithm 

𝑊𝑓𝛿: ℤ → ℋ 
i.e. view it as an infinite sequence 

ℱℤ𝑁
 

(Quantum Fourier transform) 

𝛿  

 𝑊𝑓𝛿:  ℤ𝑁 → ℋ, 𝑁 = 𝑊𝛿−1 
𝛿  
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Quantum Algorithm for HSP on ℝ𝑚 

Input: oracle function 𝑓 that hides 𝐻 ⊆ ℝ𝑚 

Output: (Generators of) 𝐻. 

 Our Algorithm: 

 Create ∑ 𝑥 ⊗ sin(
𝛿𝑥

𝑊
)|𝑓 𝛿𝑥 〉𝑥∈ℤ , 𝑁 = 𝑊𝛿−1 

ℱℤ: 𝑥 ↦  𝑒2𝜋i𝑥𝑦
𝑦∈ℝ

|𝑦〉 and measure. 

Implement by Phase Estimation. 

 Classical post-processing.  

 Existing Algorithm: 

  ℱℤ𝑁
: |𝑥〉 ↦ ∑ 𝑒2𝜋𝑖

𝑥⋅𝑦

𝑁 𝑦𝑦∈ℤ𝑁
 and measure. 



Discussion 
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 Future Directions 

Other problems in number fields, function fields… 

Harness the power the continuous (abelian) HSP framework 

 Solve (ideal) lattice problems 

Breaking lattice-based crypto?   

 Update: PIP and class group in arb. degree solved [BiasseSong’14] 
 

Thank you! 

HSP* on ℝ𝑶(𝒏) 
Arbitrary degree 
𝑛 number field 

Units of the 
number field 

Quantum 
Reduction 

New definition: 
Continuous HSP 

New  
Algorithm 


