Efficient quantum algorithms for the principal ideal problem and class group problem in *arbitrary-degree* number fields

Fang Song Institute for Quantum Computing University of Waterloo

Joint work with Jean-François Biasse (U. South Florida)

exponentially

Which problems have faster |quantum) algorithms than classical algorithms?

- **B Poly-time** quantum algorithms for:
- Factoring and discrete logarithm [Shor'94]
- Basic problems in computational algebraic number theory
 - Unit group in number fields
 - Principal Ideal Problem (PIP) & Class group problem

- Constant degree [Hallgren'02'05, SchmidtVollmer'05]
- Arbitrary degree [EHKS'14]
- Constant degree number fields [H'o2'o5, SV'o5]
- This work: arbitrary degree!

Best known classical algorithms need (at least) sub-exponential time

Results and Implications

- Efficient quantum algorithms for several basic problems in number fields of arbitrary-degree
- Examples of quantum exponential speedup
- Minor: converting solutions into compact representation

Application: PIP algorithm can be used to break classical crypto

- Smart-V Fully Homomorphic Encryption, GargGH multilinear mapping scheme, ... [CGS14,CDPR15,BS15]
- Previously considered quantum-safe (based on ideal lattice problems instead of factoring/DL)

Outline of our quantum algorithms

INPUT: a degree n number field K

Hidden subgroup problem (HSP) framework

Captures most quantum exponential speedup

Standard Def.: HSP on finite group G

Given: oracle function $f: G \to S$, s.t. $\exists H \leq G$,

- 1. (Periodic on *H*) $x y \in H \Rightarrow f(x) = f(y)$
- 2. (Injective on G/H) $x y \notin H \Rightarrow f(x) \neq f(y)$

Goal: Find (hidden subgroup) *H*.

- Uncountable group \mathbb{R}^m : tricky due to **discretization**!
 - Some earlier defs. only suitable for small dimension *m* [Ho2, Ho5, SVo5]
 - A "right" def. in high dimensions: continuous HSP [EHKS14]

Continuous HSP on \mathbb{R}^m

 \sim (unit vectors $|\cdot\rangle$ in a complex vector space)

Given $f: \mathbb{R}^m \to \{$ **quantum states** $\}$, s.t.: \exists discrete $H \leq \mathbb{R}^m$,

- 1. (Periodic) $x y \in H \Rightarrow |f(x)\rangle = |f(y)\rangle.$
- 2. (Pseudo-injective) x y far from $H \Rightarrow |f(x)\rangle \perp |f(y)\rangle$
- 3. (Lipschitz continuitiy) x y close to $H \Rightarrow |f(x)\rangle \approx |f(y)\rangle$

Goal: Find (hidden subgroup) *H*.

```
\begin{split} \min_{\substack{\nu \in H \\ \forall \in H}} ||x - y - \nu|| &\geq r \\ \Rightarrow \langle f(x) | f(y) \rangle &\leq \epsilon. \\ |||f(x)\rangle - |f(y)\rangle|| \\ &\leq a \cdot ||x - y||. \end{split}
```

Theorem [EHKS14] \exists efficient quantum algorithm solving continuous HSP on \mathbb{R}^m .

N.B.: *H* is a Lattice $L(B) = \{a_1v_1 + \dots + a_mv_m : a_i \in \mathbb{Z}\} \subseteq \mathbb{R}^m$

- Basis $B: \{v_i \in \mathbb{R}^n : i = 1, ..., m\}$
- *L* has (infinitely) many bases

Interesting HSP instances

Computational Problems	HSP on G	
Factoring	Z	
Discrete logarithm	$\mathbb{Z}_N imes \mathbb{Z}_N$	
Unit group, PIP, class group, constant-degree fields	\mathbb{R}^{const}	
Unit group, arbitrary degree n	Continuous $\mathbb{R}^{O(n)}$	
[This work] PIP, class group, arbitrary degree n	Continuous $\mathbb{R}^{O(n)}$	
Graph isomorphism	Symmetric group	
Unique shortest vector problem	Dihedral group	

Abelian groups ∃ efficient quantum alg.

Non-abelian groups Open question: ? ∃ efficient quantum alg.

Outline of our quantum algorithms

Number Field Basics

- Number Field $K \subseteq \mathbb{C}$: Finite extension of \mathbb{Q} .
 - **Degree n**: dimension of *K* as vector space over \mathbb{Q}
- Ring of Integers *O*: K ∩ Roots of monic irreducible poly Z[X]. (e.g. *O*_Q = Z)
 Ex (Cyclotomic field). Q(ω) = {a₀ + a₁ω + ··· + a_{p-2}ω^{p-2}: a_i ∈ Q}.ω = e^{2πi/p}, p prime.
 O = Z[ω], n = p − 1
- Group of S-units U_S : $U_S \coloneqq \{ \alpha \in \mathcal{O} : \alpha \mathcal{O} = p_1^{v_1} \cdot ... \cdot p_k^{v_k} \text{ for some } v_i \in \mathbb{Z} \}$
 - $S = \{p_1, \dots, p_k\}$ a set of prime ideals
- Special case: Unit group U
 - $S = \emptyset \Rightarrow U_{\emptyset} = U = \{$ invertible elements in $\mathcal{O}.\}$

Principal Ideal Problem Given ideal $I \subseteq \mathcal{O}$ decide if $I = \alpha \mathcal{O}$ and find α if so. • i.e. $\alpha \in \mathcal{O}$, s.t. $\alpha \mathcal{O} \cdot \prod p_i^{-\nu_i} = \mathcal{O}$

- i.e. $\alpha \in \mathcal{O}$, s.t. $\alpha \mathcal{O} = \mathcal{O}$
- Classical alg's: $\exp(n) \exp(|\mathcal{O}|)$
- Quantum alg's: $\exp(n) \operatorname{poly}(|\mathcal{O}|)$
- This work: $poly(n) poly(|\mathcal{O}|)$

Outline of our quantum algorithms

INPUT: a degree n number field K

Reducing S-units to Continuous HSP

Identifying S-units as a subgroup

 $\alpha \in U_S \Leftrightarrow \alpha \mathcal{O} \cdot \prod_{i=1}^k p_i^{-\boldsymbol{v}_i} = \mathcal{O}, \boldsymbol{v}_i \in \mathbb{Z}$

 $\Rightarrow (x, v) \in \Lambda_S \Leftrightarrow L_x \cdot L_v = \underline{\mathcal{O}}$

Defining hiding function: classical part

 $(x, v) \in \Lambda_S$

2. (Lipschitz)

"Small" shift in inputs → "Similar" output lattices

3. (Pseudo-inj)

"Big" shift in inputs → Small–overlap lattices

Completing the HSP reduction

 $\varphi_{S} \downarrow$ $\Lambda_{S} \leq \mathbb{R}^{m} \times \mathbb{Z}^{k}$ $g_{c} \downarrow$ $\{\text{lattices in } \mathbb{R}^{n}\}$ $f_{q} \downarrow$ $\{\text{quantum states}\}$

S-Units U_S

Issue: no unique representation for lattices in ℝⁿ
 L_{x,v} = L_{x',v'} same lattice, but g_c(x,v) and g_c(x',v') output different bases.
 Fix: encode lattices in quantum states [EHKS14]
 f_q: L ↦ |L⟩ = superposition over "all" lattice points

 $\Longrightarrow \langle L' | L \rangle \propto L \cap L'$

Theorem. $f_S = f_q \circ g_c$ is a continuous HSP instance w. period Λ_S .

- (Lipschitz) (x, v) (x', v') close to $\Lambda_S \xrightarrow{g_c} L \approx L' \xrightarrow{f_q} \langle L' | L \rangle \approx 1$
- (P-Inj.) (x, v) (x', v') far from $\Lambda_S \xrightarrow{g_c} L \& L'$ small overlap $\xrightarrow{f_q} \langle L' | L \rangle$ small
- What's missing: efficiently implement f_S
 - !Computing g_c delicate: e^x doubly-exp. large & precision loss

 \rightarrow Invoke quantum HSP algorithm [EHKS14], we find Λ_S efficiently!

Summary

Number field K of arbitrary degree n

Future Directions

- Solving more problems in the continuous HSP framework
- Quantum attacks on other (ideal) lattice cryptosystems
- Better quantum algorithms for Non-abelian HSP?

