PQC Asia Forum Seoul, 2016

What are we talking about when we talk about **post-quantum** cryptography?

PQC Asia Forum Seoul, 2016

A personal view on postquantum cryptography & a bite on quantum algorithms

Portland State Fang Song Computer Science Portland State University

How does cryptography **change** in a quantum world?

Triumph of modern cryptography

cryptography	Digital signature: DSA, Public-key encryption: RSA, Diffie-Hellmann key exchange	2015 A.M. Turing Award	
Symmetric-key cryptography	Block ciphers: AES Cryptographic hash function: S	HA-2,	
Cryptographic protocols	 Secure two/multi-party computive e-voting, 	tation	
Cryptography: a pillar of security for individuals, organizations and society!			

4

Modern cryptography as a science

A formal framework: provable security

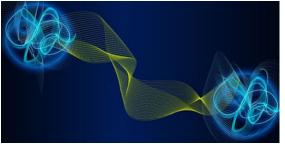
2012 ACM A.M. Turing Award

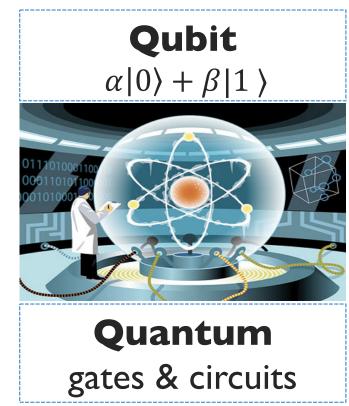
"... created mathematical structures that turned cryptography from an **art** into a **science**."

Hard problem Π

- Security Model
- Security Analysis (Proof)
 - Breaking Σ is as hard as solving Π
- Computational assumption
 EX. Factoring & Discrete Log hard to solve

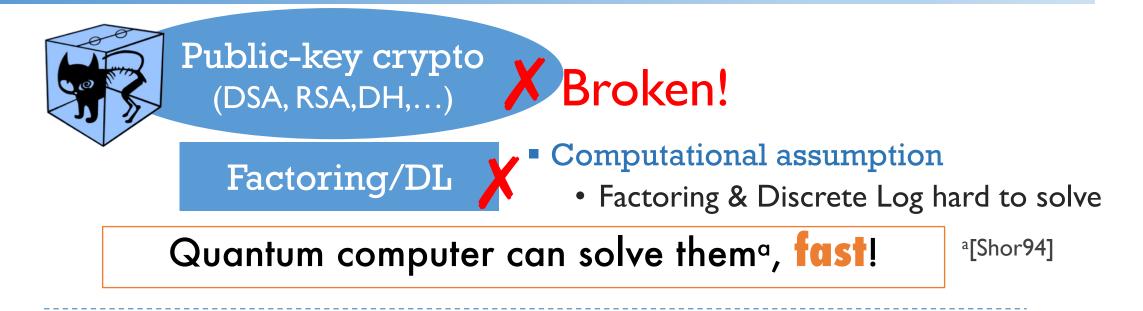
Into a quantum world: the dark cat rises


Physicists: quantum weirdness Computer scientists


Quantum superposition

 $\frac{1}{\sqrt{2}}(|\text{ALIVE}\rangle + |\text{DEAD}\rangle)$

Quantum Entanglement



Non-classical correlation
 "Spooky action at a distance"
 – A. Einstein

How does cryptography change in a quantum world?

Quantum attacks 1: break classical foundation

Need: alternative problems to build crypto on

• Exciting progress: lattice-based, code-based, ...

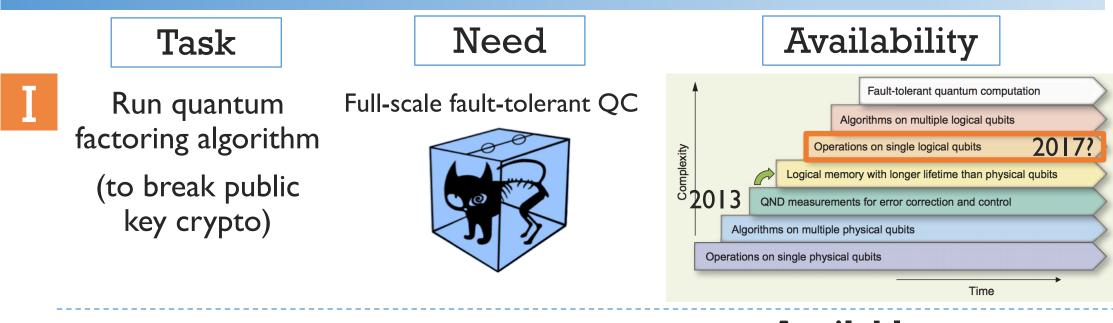
Question: are the new problems hard for classical & **quantum** computers?

Is this all we need to worry about?

Quantum attacks 2: invalidate classical framework

Crypto schemes	Security ModelSecurity Analysis	
Latticoc	Computational assumption:	
Lattices,	hard for quantum computer	

Alert: unique quantum attacks


∃ information-theoretically secure protocol(Technology available)Broken^b by quantum entanglement! (vs. shared randomness)•[CSST11]

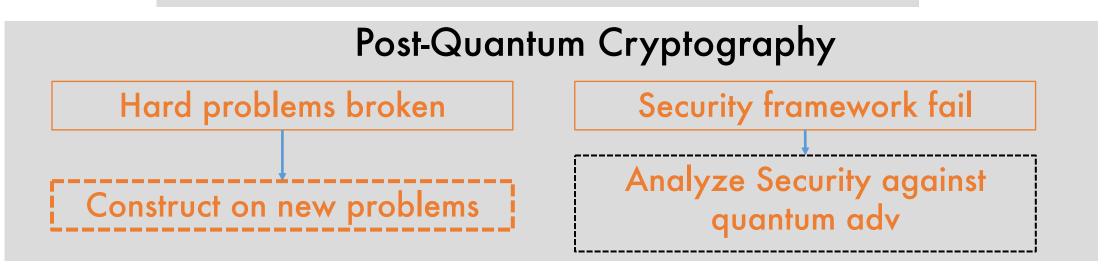
Need: quantum provable-security framework

Re-examine EVERY link against quantum attackers

[©] Largely missing in PQC research...

Any quantum ingredient could be a threat

Π


Quantum attack classical crypto Ex. Quantum entanglement

Available now

How to Build Your Own Quantum Entanglement Experiment, Part 1 (of 2)

How does cryptography **change** in a quantum world?

Quantum Cryptography

Outperform classical protocols

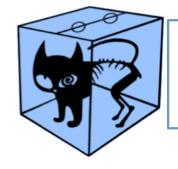
• Ex. Quantum key distribution

Crypto tools for quantum tasks

• Ex. Encrypt quantum data

NB. Many already available (even as commercial products)

This Talk


l Quantum algorithms

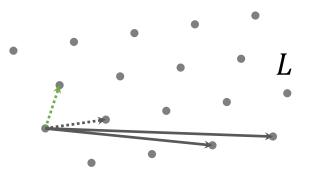
- A recent breakthrough: quantum algorithm for high-degree number fields
 Application: break some lattice crypto!
- The Hidden Subgroup Problem & Quantum Fourier Sampling

2 Examples: classical security framework inadequate

- Quantum Rewinding
- Quantum random oracle model
- Quantum attack on symmetric crypto

exponentially

Which problems admit faster |quantum> algorithms than classical algorithms?


∃ Poly-time quantum algorithms for:

Factoring and discrete logarithm [Shor'94]

Basic proble algebraic nu	ems in Imber theory	Unit group	Principal ideal problem	Class group	
	nt degree oer fields	[Hallgren'02'05,SV05]			
Arbitrary degree		[EHKS'STOCI4]	[BS'SOD/	S'SODAI6]	
	Best known classical algorithms need (at least) sub-exponential time				

Our quantum algorithms for Unit group, Principal ideal problem

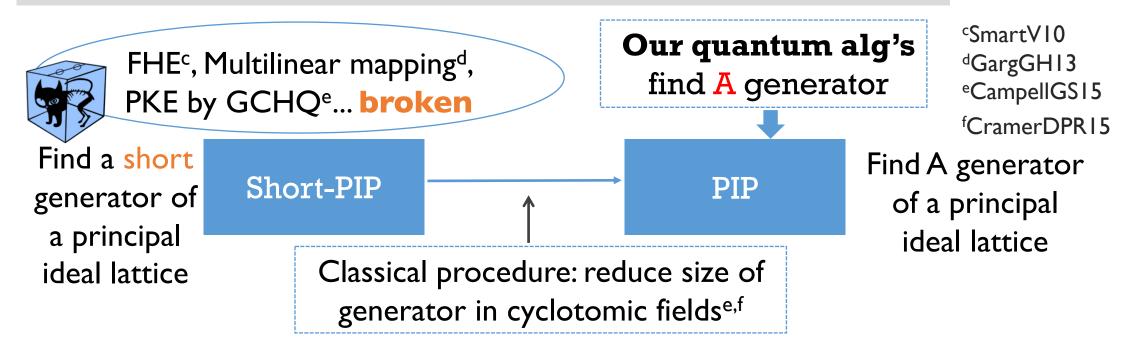
Break several lattice-based cryptosystems believed quantum safe before

QUANTA MAGAZINE

CRYPTOGRAPHY

A Tricky Path to Quantum-Safe Encryption

Breaking some lattice crypto

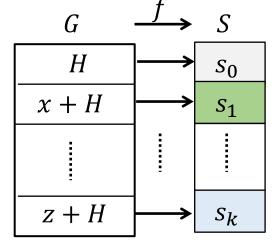

Ring-LWE

Short-PIP

For efficiency, often use problems in lattices w/ more structures

. . .

Bad news: Short-PIP based cryptosystems are broken!


How do quantum computers solve these problems?

The Hidden Subgroup Problem (HSP) framework

Captures most quantum exponential speedup

• Standard Def.: HSP on finite group G

Given: oracle function $f: G \to S$, s.t. $\exists H \leq G$,

- I. (Periodic on *H*) $x y \in H \Rightarrow f(x) = f(y)$
- 2. (Injective on G/H) $x y \notin H \Rightarrow f(x) \neq f(y)$

Goal: Find (hidden subgroup) *H*.

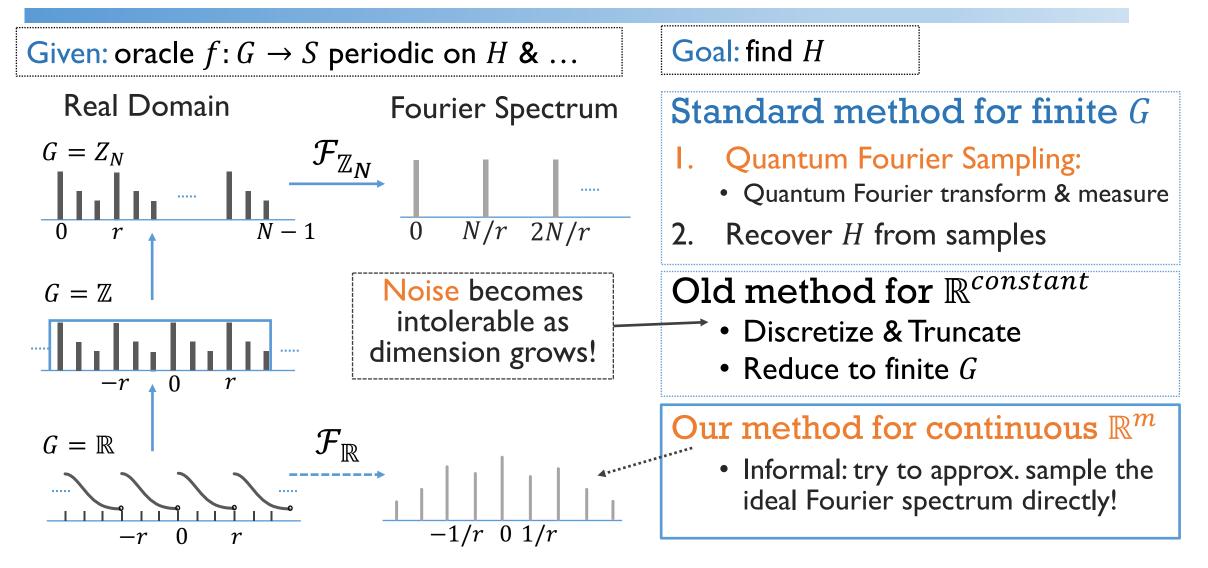
• Continuous \mathbb{G} (e.g. \mathbb{R}^n) tricky, but we can handle [EHKS14]

Interesting HSP instances

Computational Problems	HSP on G
Factoring	Z
Discrete logarithm	$\mathbb{Z}_N imes \mathbb{Z}_N$
Number fields (PIP etc.)	$\mathbb{R}^{O(n)}$
Simon's problem (Crypto app later)	\mathbb{Z}_2^n

Abelian groups

∃ efficient quantum algs


Graph isomorphism	Symmetric group
Unique shortest vector problem	Dihedral group

Non-abelian

Open question:

[|] ? efficient quantum algs

Solving HSP: quantum Fourier sampling

This Talk

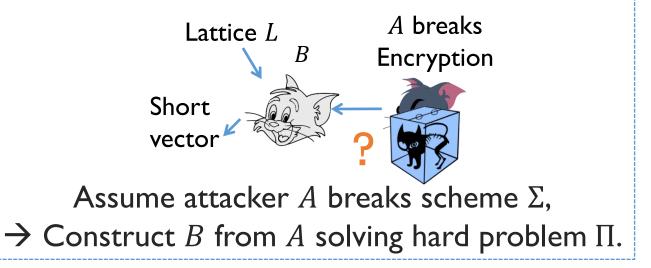
l Quantum algorithms

- A recent breakthrough: quantum algorithm for high-degree number fields
 Application: break some lattice crypto!
- The Hidden Subgroup Problem & Quantum Fourier Sampling

2 Examples: classical security framework inadequate

- Quantum Rewinding
- Quantum random oracle model
- Quantum attack on symmetric crypto

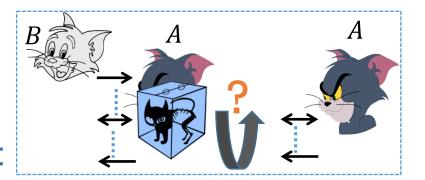
Recall: classical security framework fails


Security model inadequate for quantum attackers Quantum security models: Still at early stage

 Σ Scheme Σ Quantum hard

ртоblem П Classical proofs can fail against quantum attackers

Many PostQuantumC only consider classical attackers in proofs


See more in [Song'PQC14]

I. Difficulty of quantum rewinding

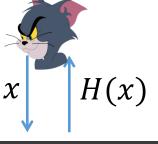
Rewinding argument

- Take snapshot of an adversary & continue
- Later "rewind" & restart from snapshot
- Rewinding quantum adversary difficult
 - Cannot **copy** unknown quantum state
 - Information gain \rightarrow disturbance on state

Only special cases possible^g

g[Watrous09]

- →Quantum security of many classical protocols unclear
- Not often seen in PQC literature?
 - Usually does not affect analysis of encryption, signature, ...
 - But does **matter**: e.g. Quantum-secure **Identification** scheme (to get signature by Fiat-Shamir)

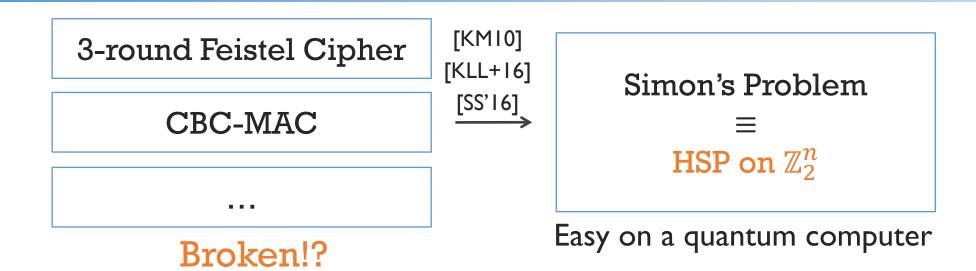

II. Hash function: common heuristic fails?

- Hash functions are everywhere:
- The Random Oracle (RO) heuristic widely used
 - "Lazy" sampling: decide $H(\cdot)$ on-the-fly
 - Program RO: change $H(\cdot)$ adaptively
 - Ease security proof of hash-based schemes (otherwise **impossible**)

Quantum-accessible Random Oracle

- Nothing appears to work...
- A lot exciting developement restoring classical proofs

Signature, message authentication, key derivation, bitcoin,...



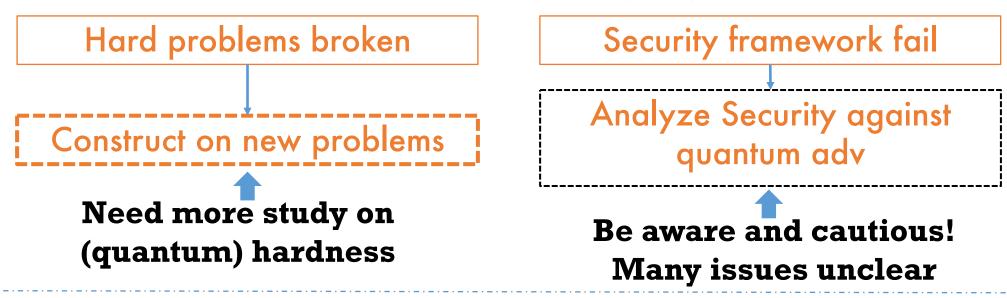
Hash Function H

 $\Sigma_{\chi}|\chi\rangle$

 $\Sigma_{x}|x\rangle|H(x)\rangle$

III. Quantum attacking symmetric crypto

- These attacks need specific* quantum model
 - Assume attackers have QUANTUM access to the SECRET enc/auth algorithm


* In my opinion unrealistic but still possible

- Quantum random oracle is more justified
 - Hash functions are public, any (quantum) user can implement it quantumly

Concluding Remarks

How does cryptography **change** in a quantum world?

Post-Quantum Cryptography

Quantum Cryptography Possible complement

I'm hiring

2-3 PhD students to work on

- Quantum algorithms
- Analyzing quantum security of classical crypto
- Quantum crypto
- Maybe 1 Post-doc too
- Get in touch if interested Portland State Computer Science
 - Check my webpage for more: fangsong.info
 - Email: fang.song@pdx.edu
- Young but strong in
 - Programming language, machine learning, vision, ...
 - Portland is absolutely nice in many ways~

