
A quantum algorithm for computing the unit group of an
arbitrary degree number field

Kirsten Eisenträger
∗

Department of Mathematics
The Pennsylvania State

University
eisentra@math.psu.edu

and Harvard University

Sean Hallgren
†

Dept. of Computer Science
and Engineering

The Pennsylvania State
University

hallgren@cse.psu.edu

Alexei Kitaev
Kavli Institute for Theoretical

Physics
University of California, Santa

Barbara
kitaev@kitp.ucsb.edu
and California Institute of

Technology

Fang Song
Department of Combinatorics

& Optimization
and Institute for Quantum

Computing
University of Waterloo

fang.song@uwaterloo.ca

ABSTRACT
Computing the group of units in a field of algebraic numbers
is one of the central tasks of computational algebraic num-
ber theory. It is believed to be hard classically, which is of
interest for cryptography. In the quantum setting, efficient
algorithms were previously known for fields of constant de-
gree. We give a quantum algorithm that is polynomial in
the degree of the field and the logarithm of its discriminant.
This is achieved by combining three new results. The first is
a classical algorithm for computing a basis for certain ideal
lattices with doubly exponentially large generators. The sec-
ond shows that a Gaussian-weighted superposition of lattice
points, with an appropriate encoding, can be used to provide
a unique representation of a real-valued lattice. The third is
an extension of the hidden subgroup problem to continuous
groups and a quantum algorithm for solving the HSP over

∗Partially supported by National Science Foundation grant
DMS-1056703 and by the National Security Agency (NSA)
under Army Research Office (ARO) contract number
W911NF-12-1-0522. Part of this work was done while the
first author was visiting Harvard University and MIT.
†Partially supported by National Science Foundation awards
CCF-0747274 and CCF-1218721, and by the National Se-
curity Agency (NSA) under Army Research Office (ARO)
contract number W911NF-12-1-0522. Part of this work was
done while visiting MIT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC ’14, May 31 - June 03 2014, New York, NY, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2710-7/14/05$15.00.
http://dx.doi.org/10.1145/2591796.2591860.

the group Rn.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems

General Terms
Algorithms, Theory

Keywords
Quantum Algorithms, Unit Group, Computational Alge-
braic Number Theory

1. INTRODUCTION
The problems where quantum algorithms have exponen-

tial speedups over the best known classical algorithm have
mostly been of number theoretic origin. Shor found quan-
tum algorithms for factoring and discrete log [Sho97] and
Hallgren found a quantum algorithm for solving Pell’s equa-
tion [Hal07]. These algorithms were further generalized to
finding the unit group of a number field and related prob-
lems [Hal05, SV05]. The running time is measured in terms
of the discriminant and the degree of the number field. The
degree of a number field is its dimension as a vector space
over Q, while the discriminant is related to the volume of
the fundamental domain of the ring of integers. The algo-
rithms in [Hal05, SV05] are only efficient for constant degree
number fields. In this paper we address the arbitrary degree
case and give an algorithm that is efficient in both the dis-
criminant and the degree.

A number field K can be defined as a subfield of the com-
plex numbers C which is generated over the rational numbers
Q by an algebraic number, i.e. K = Q(θ), where θ is the root
of a polynomial with rational coefficients. If K is a number

Proceedings of the 2014 ACM Symposium on Theory of Computing

293

field, then the subset of K consisting of all elements that are
roots of monic polynomials with integer coefficients, forms a
ring O, called the ring of integers of K. The ring O ⊆ K can
be thought of as a generalization of Z ⊂ Q. In particular,
we can ask whether O is a principal ideal domain, whether
elements of O have unique factorization, and what the set
of invertible elements is. The unit group O∗ is the set of in-
vertible algebraic integers inside K, that is, elements α ∈ O
such that α−1 ∈ O.

Computing the unit group of a number field is an impor-
tant problem in computational number theory. By Dirich-
let’s Theorem the group of units O∗ is isomorphic to µ(K)×
Zs+t−1, where µ(K) are the roots of unity contained in K
and K has s real embeddings and t pairs of complex conju-
gate embeddings. An elementary version of the problem is
Pell’s equation: given a positive non-square integer d, find x
and y such that x2−dy2 = 1. Solutions to this equation are

parametrized by the formula xk +yk

√
d =

`
x1 +y1

√
d
´k

; the

numbers ±
`
xk+yk

√
d
´

are exactly the units of the quadratic

ring Z
ˆ√
d
˜

(or a subgroup of index 2 if there is a unit that
has norm −1). The fundamental solution (x1, y1) is difficult
to find, or even to write down because it may be exponential
in d (i.e., doubly-exponential). Moreover, the computation

of the real number R = ln
`
x1 + y1

√
d
´

with a polynomial
number of precision digits is believed to be a hard problem
classically.

A polynomial time quantum algorithm for the computa-
tion of R was given in [Hal07]. The approach is to reduce
the problem to a hidden subgroup problem (HSP) over the
real numbers R, and then to give a quantum algorithm for
that hidden subgroup problem. In this context, the HSP
amounts to having a periodic function on R which is 1-1
within the period. The goal is to approximate the period.

For the unit group the corresponding periodic function g
takes a real number u to a lattice g(u) ⊂ R2. More specifi-
cally, we can embed O as a lattice, and then g(u) is obtained
by stretching by a factor of eu in one direction and squeezing
in the other:

g(u) = (eu, e−u)O :=
˘`
euz(1), e−uz(2)´ : (z(1), z(2)) ∈ O

¯
,

where O =
˘`
x+ y

√
d, x− y

√
d
´

: x, y ∈ Z
¯
,

for d ≡ 2, 3 (mod 4). The function g is periodic with pe-
riod R and 1-1 within the period. However, exponential
stretching and squeezing of lattices are not computationally
trivial. Furthermore, the standard quantum algorithm for
the hidden subgroup problem requires a unique represen-
tation of the oracle function value (a representation up to
an equivalence relation will not work). In [Hal07] these is-
sues were addressed by using an intricate notion of “reduced
ideals”. This method was extended to constant degree num-
ber fields [Hal05, SV05], but it is difficult to generalize this
method to rings of higher degree. At a minimum, com-
puting the required reduced ideals seems to require solving
the shortest vector problem in ideal lattices of dimension n,
and enumerating lattice points also seems necessary. Cryp-
tosystems whose security relies on the hardness of solving
problems in ideal lattices have been suggested for cryptog-
raphy [PR07, LPR10]. Another problem is running the hid-
den subgroup algorithm for the continuous group G = Rm,
where rounding causes errors. Such errors are tolerable when
m is fixed, but worsen in higher dimensions.

We propose a different scheme, leading to a quantum re-

duction from computing the unit group of a number field of
arbitrary degree n to solving an Abelian hidden subgroup
problem over Rm, where m = O(n). It involves several
important ingredients. First, we represent a lattice by a re-
duced basis (up to some precision). The exponential trans-
formation is performed using repeated squaring of lattices.
These lattices can be multiplied because they are also ide-
als. Having obtained some basis of the lattice L = f(u), we
construct a canonical quantum representation of L, namely
the Gaussian-weighted superposition of lattice points with
a sufficiently large dispersion. To ensure stability against
rounding errors, each lattice point is represented by a su-
perposition of nearby points in a fine grid. (For example, in
one dimension, such a superposition straddles two adjacent
grid points.) The initial idea for handling this was using
double Gaussian states as in [GKP01], which required a dif-
ferent representation of points. In addition to showing how
to classically compute approximate bases for the stretched
lattices, we prove that the inner product of Gaussian lattice
states has a hidden subgroup property.

One byproduct of this work is a generalization of the HSP
to uncountable topological groups such as R. Most expo-
nential speedups by quantum algorithms either use or try
to use the HSP [FIM+03, HMR+10]. In the HSP a func-
tion f : G → S is given on a group G to some set S. For
an unknown subgroup H ⊆ G, the function is constant on
cosets of H and distinct on different cosets. The goal is to
find a set of generators for H in time polynomial in the ap-
propriate input size, e.g. log |G|. When G is finite Abelian
or Zm there is an efficient quantum algorithm to solve the
problem.

Using the usual definition of the HSP for the group G = R
does not work as can be seen by the following illustration.
When the group is discrete the function can be evaluated on
any group element. For example, it is possible to verify that
a given element h is in H, by testing if g(0) = g(h). Over
the reals, if the period is some transcendental number x,
then no algorithm could ever even query g(x), and then see
that it matches g(0). It is possible to address this by giving
an ad-hoc technical definition if we replace R by a discrete
set with rounding, as in the case of constant degree number
fields [Hal07, Hal05, SV05]. However, it is not known how
to solve the HSP with such a definition. Here we give a
cleaner definition using continuous functions which aids us
in finding an algorithm to solve the general problem.

Definition 1.1 (The continuous HSP over Rm).
The unknown subgroup L ⊆ Rm is a full-rank lattice sat-
isfying some promise: the norm of the shortest vector is at
least λ and the unit cell volume is at most d. The oracle has
parameters (a, r, ε). Let f : Rm → S be a function, where S
is the set of unit vectors in some Hilbert space. We assume
that f hides L in the following way.

1. f is periodic on L: for all v ∈ L, x ∈ Rm, f(x) =
f(x+ v);

2.
‚‚|f(x)〉 − |f(y)〉

‚‚ 6 a · dist(x, y) for all x, y ∈ Rm

(Lipschitz);

3. If minv∈L ‖x− y − v‖ > r, then
˛̨
〈f(x)|f(y)〉

˛̨
6 ε.

Given an efficiently computable function with this property,
compute a basis for L.

294

We show that computing the unit group of an arbitrary de-
gree number field can be (quantum) reduced to this defini-
tion of the HSP, and we also give a quantum algorithm for
solving it. We prove the following main theorem

Theorem 1.2. There is an efficient quantum algorithm
to compute the unit group of a number field K that is poly-
nomial in the degree of K and polynomial in log of the dis-
criminant of K.

This follows from Theorem 4.4, Theorem 5.7, Theorem 6.1,
and the fact that lattice Gaussians can be computed effi-
ciently given an approximate basis.

Computing the unit group is one of the main computa-
tional tasks in algebraic number theory [Coh93]. Two of the
others are solving the principal ideal problem and computing
the class group. Based on the previous quantum algorithms
for solving these three problems in the constant degree case,
the unit group seems to be the most difficult part. The other
two problems can be solved using the unit group algorithm
and general hidden subgroup techniques. We leave the other
two problems open for arbitrary degree. The main issue will
be proving that the HSP functions constructed to solve them
are Lipschitz.

In the context of cryptography, the problem of computing
the unit group and solving the principal ideal problem are
considered to be hard classically, even over degree two num-
ber fields. It was used as a basis in the Buchmann-Williams
key exchange problem in an effort to find a system that is
harder to break than factoring-based systems. On the other
hand, the typical ideal lattice problem, such as finding short
vectors over degree two number fields, is easy because the
degree is constant.

In the last few years, since the discovery of homomor-
phic encryption and the ensuing efforts to make the systems
more efficient and more secure, assumptions related to num-
ber fields have been used. These systems are set up based on
high degree number fields. In [GH11], a version of the prin-
cipal ideal problem where a special generator is the secret
was used as the hardness assumption. The Ring-LWE prob-
lem which forms the basis in [LPR10, BV11] assumes that
finding short vectors in ideal lattices of high degree number
fields is hard.

To summarize, the constant degree assumptions are bro-
ken by quantum algorithms. The relatively recent high de-
gree number field assumptions about computing short vec-
tors are still open in terms of security against quantum com-
puters. However, in this paper we show that it is now pos-
sible to efficiently compute the unit group in these number
fields, which could move towards understanding whether the
new homomorphic cryptosystems really are secure against
quantum computers.

2. NUMBER-THEORETIC BACKGROUND
In the following K will denote a number field of degree n

over Q, and O will denote its ring of integers. When we want
to consider O as a lattice in E = Rs×Ct with s+2t = n (see
below), we will write O. We use bold letters to designate
elements of E and vectors in general.

If {b1, . . . , bn} is a basis for a lattice Λ ⊆ Rn, let B be
the matrix B = (b1, . . . , bn) which is composed of column
vectors bk. Then d(Λ) := | det(B)| is the unit cell volume of
the lattice Λ generated by the basis.

Elements of K can be conveniently represented by using
the embeddings of K into the field of complex numbers. In
general, there are n such embeddings, which break into s
real ones and t complex-conjugate pairs:

τ1, . . . , τs :K → R,
τs+1, . . . , τs+t, τs+1, . . . , τs+t :K → C (s+ 2t = n).

Each element z ∈ K is mapped to the corresponding conju-

gate vector τ (z) =
“
z(1), . . . , z(s), z(s+1), . . . , z(s+t), z(s+1),

. . . , z(s+t)
”T

∈ Rs×C2t, where the last t coordinates are re-

dundant. Thus, K is embedded into E = Rs×Ct. Conjugate
vectors are added and multiplied coordinate-wise. Many
useful functions on K extend naturally to E. For exam-
ple, the algebraic trace and norm are defined for arbitrary
conjugate vectors:

tr(z) =

sX
j=1

z(j) +

s+tX
j=s+1

`
z(j) + z(j)

´
,

N (z) =

sY
j=1

z(j)
s+tY

j=s+1

|z(j)|2.

Both these functions take real values.
As far as the additive structure is concerned, the ring

E is simply an n-dimensional real space. We can define a
Euclidean inner product on E by letting

〈x,y〉 = tr(xy) =

sX
j=1

x(j)y(j)+

2

s+tX
j=s+1

“`
Rex(j)´`Re y(j)´+

`
Imx(j)´`Im y(j)´”.

The length of a vector with respect to this inner product is
denoted by ‖z‖.

Now let {ω1, . . . , ωn} be some basis (over Z) for the ring
O of integral elements in K. One way to characterize O
is by its “multiplication table”, i.e., the decomposition of
ωjωk into ωl with integer coefficients. In the conjugate vec-
tor representation, O becomes a lattice O ⊆ E with basis
{z1, . . . , zn}. From the computational perspective, it is im-
portant to have some upper bound on the length of the basis
vectors or, equivalently, on the coefficients in the multipli-
cation table. To this end, we use the notion of discriminant,
which is defined as the determinant of the matrix G with
entries Gjk = tr(ωjωk). The discriminant D = D(O) de-
pends only on the ring but not the basis. The extension
degree, n, and the discriminant, D, constitute a natural set
of parameters characterizing the “complexity” of the ring.
Our algorithm for finding the group of units is polynomial
in n+ log |D|.

For various algorithmic tasks, e.g. the computation of the
lattice euO, the basis vectors of O must be known with
sufficient precision. We will use the fact that the embedding
of elements of K can be found to any polynomial number of
precision bits in polynomial time [Thi95].

3. OVERVIEW OF THE ALGORITHM
The group of unitsO∗ consists of elements z ∈ O such that

N (z) = ±1, and they are represented by conjugate vectors

295

of the form z = euv. Here u = (u(1), . . . , u(s+t)) ∈ Rs+t

satisfies the condition
P

j u
(j) = 0, and the components of

v = (v(1), . . . , v(s+t)) ∈ E = Rs × Ct are real or complex
numbers of absolute value 1. Thus, the group of units O∗ is
contained in

G = Rs+t−1 ×
`
(Z2)

s × (R/Z)t´.
More specifically, O∗ is the hidden subgroup in G which

corresponds to the following oracle:

g : G→ lattices in E : (u,v) 7→ euvO. (3.1)

We give an efficient classical realization of this function,
where the output (i.e. a lattice L ⊂ E) is represented by
some basis with a certain precision. Unfortunately, such a
representation is not unique, and therefore g cannot be used
as an oracle for a quantum HSP algorithm. To deal with
this issue, we compose the function g with another function:

f̃ : lattices in E → quantum states : L 7→ |f̃(L)〉, (3.2)

where |f̃(L)〉 is a uniquely defined quantum superposition
that encodes the lattice L. Thus, we obtain a usable quan-
tum oracle

f = f̃ ◦ g : G→ quantum states : (u,v) 7→
˛̨
f̃
`
euvO

´¸
.

Note: By abuse of notation, we will later denote f̃ as f . For
example, we will refer to the quantum state that encodes the
lattice L as |f(L)〉.

Finally, we reduce the HSP problem for G to that for
Rm and apply a general algorithm for finding the hidden
subgroup in Rm.

Thus, our algorithm for finding the group of units splits
into three self-contained parts:

• A classical algorithm for computing the function g :
(u,v) 7→ veuO. Note that we cannot compute eu be-
cause it is an exponentially long number. Instead, we
begin with representing u as 2lu0, where u0 is suffi-
ciently small, and compute the lattice eu0O directly.
Then we apply the following procedure l times: given
a basis {z1, . . . , zn} of the lattice Λ = ewO (for some
w that does not need to be known), we compute some
basis of the lattice Λ2 = e2wO. The repeated squaring
yields a basis of the lattice euO; then we multiply it
by v. The ideal squaring procedure is not trivial. We
need to compute all products zjzk and find some basis
of the lattice they generate. This requires the detec-
tion of linear dependencies with integer coefficients as
well as some way to prevent the vector lengths from
growing. The algorithm for computing a basis for euO
is new as far as we know.

• A quantum procedure for the creation of the state
|f̃(L)〉 representing a lattice L ⊂ Rn. Let L be given
by some basis B. We first make a Gaussian-weighted
superposition of coefficient vectors x ∈ Zn that repre-
sent the lattice points relative to the basis. Then for
each x ∈ Zn we create the corresponding lattice point
z = Bx ∈ L as a quantum state. In doing so, we use a
straddle encoding strn,ν (to be defined in Sect. 5) to ac-
count for rounding errors. The original value of x may
now be erased (in a reversible way, which requires the
reconstruction of x from ez ≈ z). The resulting state,

|f̃(L)〉 = c
P

z∈L e
−π‖z‖2/s2 ˛̨

strn,ν(z)
¸
, does not de-

pend on the basis (except for small inaccuracies in the
preparation of the Gaussian superposition). Assum-
ing a lower bound on the length of a shortest vector,
λ1(L) > λ, and an upper bound on the unit cell vol-
ume, d(L) 6 d, we find a Lipschitz constant of the

function f̃ and estimate the inner product 〈f̃(L)|f̃(L′)〉
when the lattices L and L′ are far apart.

• An efficient quantum algorithm for finding a hidden
subgroup in an elementary Abelian group (as discussed
in the introduction). Such groups are quotients of Rk×
Zl, therefore it is sufficient to consider this case. The
problem is further reduced to the HSP for G = Rm.
The algorithm has the usual structure. We create a
superposition of points in Rm with a sufficiently broad
wavefunction w, apply the oracle, and measure in the
Fourier basis. In the first approximation, the Fourier
sampling generates a point u of the reciprocal lattice
L∗ with the probability distribution

qu =
1

d(L)2

Z
(Rm/L)2

〈f(x′)|f(x)〉 e2πi〈x−x′,u〉 dx dx′.

Repeating the procedure sufficiently many times, we
obtain a set of vectors that generate L∗. In prac-
tice, the Fourier samples deviate from the lattice points
by, roughly, the inverse width of the wavefunction w.
Then the lattice is reconstructed from an approximate
generating set (see Section 4.3).

All of our results are stated for the ring of integers O of
a given number field K, but they can easily be extended to
general orders of K.

4. COMPUTING A BASIS FOR etO
In this section we show how to compute an approximate

basis for the lattice etO. Because et is in general doubly
exponential in size and we have to use floating point com-
putations, this is a non-trivial operation. The basic steps
are to alternate ideal multiplication with size reduction to
compute a short basis for the product of the two ideals that
were multiplied. The algebraic numbers that appear in this
computation would take exponentially many bits to repre-
sent exactly. Instead we show that a polynomial number of
bits of precision is sufficient. The idea is to use the fact that
we are always using ideal lattices with lower bounds and up-
per bounds on the vector lengths appearing throughout the
computation, so that the precision loss can be bounded at
each step. With this we can pick a precision high enough,
some polynomial number of bits, so that we still have high
precision at the end. The precision we need is that for any
vector of length at most s

√
n, the computed vector is within

1/(2N) of the actual vector. Here s and N are parame-
ters chosen such that the lattice Gaussian superposition in
Section 5 will be a good approximation to the lattice.

Given t = (t1, . . . , tn) ∈ Rn such that
P
ti = 0 we

will show how to compute a basis of the lattice f(t) =
(et1 , . . . , etn) · O.

The function f : Rn → {real-valued lattices} is constant
and distinct on cosets of the Log embedding of (the free part
of) the units. We will later handle the fact that we only have
approximations of these lattices, in particular, how to create
useful superpositions using the approximations.

296

The main subroutine needed for computing f computes a
basis of the product of two lattices. Lattices A and B can
be multiplied in this case since they are always of the form
(a1, . . . , an) · O, where ai ∈ R, and O2 = O. In particular,
given the bases of two lattices A = 〈w1, . . . ,wn〉 and B =
〈v1, . . . ,vn〉, all pairwise products wivj of basis vectors are
computed giving a generating set of the lattice AB, to which
we apply Theorem 4.3 to obtain a size-reduced basis.

To ensure that the entire computation can be done in
polynomial time we must give an upper bound for the de-
terminant of each lattice and a lower bound for the shortest
vector, which bounds the basis sizes.

4.1 Splitting up the computation
The computation must be split up carefully to avoid end-

ing up with doubly exponential size coefficients. First it is
split into two parts. The first part handles the integer part
of the ti’s which is complicated by the fact that eti will
be doubly-exponential in general. The solution will be to
compute a sequence of ideals A−1, A0, . . . , Am of bounded

determinant such that A−1 ×
Qm

i=0A
2i

i = f(t).
For 1 ≤ i ≤ n − 1 let ti = ri + si, where ri ∈ Z and

0 ≤ si < 1. Let rn = −
Pn−1

i=1 ri and sn = tn−rn. Using the
fact that (et1 , . . . , etn)·O = (er1 , . . . , ern)·O·(es1 , . . . , esn)·O
we will compute these two pieces separately.

Define Aj = (er1j , . . . , er(n−1)j , (e−1)
Pn−1

i=0 rij) · O, where
rij is sign(ri) times bit j of |ri|. From the determinant for-
mula it follows that the determinant of Aj is the determinant
of O times (e−1)

P
i rij

Qn−1
i=0 e

rij = e
P

i rij−
P

i rij = 1. This
also bounds the powers of Aj . The log of the determinant
of O and n define the input size to the problem.

The second part handles the fractional part of the ti’s by
directly computing the ideal A−1 = (es1 , . . . , esn) · O us-
ing the first polynomially many terms in the formula ex =P∞

i=0
xi

i!
to get the desired approximation. From the deter-

minant formula it follows that detA−1 is
Q

i e
si times the

determinant of O. The product
Q

i e
si is between e−2n and

e2n.
To see that f(t) = A−1 ·

Q
j A

2j

j , we compute

A−1 ·
Y

j

A2j

j

=A−1 ·
Y

j

“
(er1j , . . . , er(n−1)j , (e−1)

P
i rij) · O

”2j

=A−1 · (e
P

j r1j2j

, . . . , e
P

j r(n−1)j2j

, (e−1)
P

j,i rij2j

) · O

= (es1 , . . . , esn) · (er1 , . . . , ern−1 , (e−1)
P

i ri) · O

= (et1 , . . . , etn−1 , (e−1)
P

i ti) · O = f(t)

The algorithm now works as follows. First compute a Z-
basis ω1, . . . , ωn of O. Next compute the conjugate vector
representation zi = ωi. Compute A−1 as described above.
Next compute each Aj by first computing (er1j , . . . , ernj)
and then (er1j , . . . , ernj) · zi for each i.

Next use repeated squaring of ideals to compute a basis

for Aj = ((et1j , . . . , etnj) · O)2
j

. Finally, multiply the A2j

j ’s
and A−1.

4.2 Computations with approximations
Now we introduce some notation and prove some facts

that will allow us to analyze the algorithm for computing an

approximate basis of the ideal lattice etO, which is given in
Section 4.4. A real number x is typically approximated by a
rational number x̃ = p

2m such that |x̃− x| 6 ε. The param-
eter ε is called the absolute error and the ratio γ = ε/|x|
is called the relative error. A vector x = (x(1), . . . , x(n))

is approximated by another ex = (x̃(1), . . . , x̃(n)) such that
‖ex− x‖ 6 ε; the relative error is defined as γ = ε/‖x‖.

We start with a lemma bounding the error in the ideal
multiplication step.

Lemma 4.1. Suppose a basis b1, . . . , bn for a lattice et1O
and a basis c1, . . . , cn for et2O are given with relative preci-
sion γ, and each eti has norm 1, then the resulting products
bicj have relative precision 4γ

√
n||bi||n.

In the next section we show how to compute a basis from
a generating set.

4.3 Computing a basis of a lattice from an ap-
proximate generating set

To compute in polynomial time a basis b̂1, . . . , b̂n that is
bounded in size and δ-close to a basis for etO we need to
compute a bounded-length basis from a generating set. This
is also used in the hidden subgroup problem algorithm when
computing the basis for the unit lattice from a generating
set for its dual. The input and output vectors for this are
approximate. We need an algorithm that can find integer
dependencies among the rounded vectors and also to bound
the errors that result from the transformation to the reduced
basis. An algorithm for computing a lattice basis from a set
of generators was given by Buchmann and Pohst [BP87] and
Buchmann and Kessler [BK93]. They do not bound all of
the errors, though. In order to bound the errors that result
from the transformation to the reduced basis we need better
bounds on the coefficient sizes in the transformation than
what they give. For that reason we will present their algo-
rithm and improve their analysis. Both [BP87] and [BK93]
analyze the same algorithm for computing a basis, so we
give an outline of their algorithm and bounds before giving
our analysis and proving the error bounds.

The setup is as follows. Suppose that vectors a1, . . . ,ak ∈
Rn generate an r-dimensional lattice L. We are given ap-
proximations â1, . . . , âk ∈ Zn such that ||ai − âi/2

q|| ≤√
n/2q+1. We want to compute a set of vectors ĉ1, . . . , ĉr

which approximate a basis c1, . . . , cr of L with some pre-
cision q′, which will necessarily be smaller than q. The al-
gorithms in [BP87] and [BK93] compute such a basis via a
reduction to LLL. We will use their algorithm to solve this
problem, but we need a better analysis to make sure that
the output accuracy q′ is not too much smaller than q. This
is done in Theorem 4.3 below.

4.3.1 The Buchmann-Pohst algorithm
The reduction to LLL takes the input vectors â1, . . . , âk

and creates a new lattice with basis defined from the con-
catenated vectors

ãj = (ej , âj) (1 ≤ j ≤ k),

where ej denotes the j-th unit vector in Zk. These vectors
ã1, . . . ãk ∈ Zn+k are clearly linearly independent and form
a basis of the lattice L̃ =

Lk
j=1 Zãj . Note that with this

setup, the bottom of the matrix has vectors b2qaie as the
basis vectors, where b·e rounds each coordinate of the vec-
tor. The LLL-algorithm is then applied to the lattice basis

297

ã1, . . . ãk to obtain an LLL-reduced basis b̃1, . . . , b̃k. For
the first k − r of these vectors we will denote the top and
bottom components as

b̃j = (mj , ẑj)
T (1 ≤ j ≤ k − r),

and for the last r vectors as

b̃k−r+j = (m′
j , b̂j)

T (1 ≤ j ≤ r).

Note that the vectors m1, . . . ,mk−r ∈ Zk are the co-
efficient vectors transforming the vectors â1, . . . , âk to the
vectors ẑ1, . . . , ẑk−r, respectively, and the vector m′

j takes

â1, . . . , âk to b̂j (for 1 ≤ j ≤ r).
In [BP87] and [BK93] it is shown that the resulting ba-

sis has the following two properties. First, the top left
k−r columns contain a linearly independent set of relations
m1, . . . ,mk−r ∈ Zk for the exact vectors a1, . . . ,ak. A rela-
tion vector mj = (m1j , . . . ,mkj)

t satisfies
Pk

i=1mijai = 0.
In the exact matrix the vectors z1, . . . , zk−r would be zero,
so the approximate vectors ẑi will be small. The second
property of the resulting basis is that the bottom right of
the matrix contains approximations b̂1, . . . , b̂r to a basis for
the lattice generated by a1, . . . ,ak.

In [BK93] it is shown that given good enough approxima-
tions of a,, . . . ,ak, the vectors

bj =

kX
i=1

m′
i,jai (1 ≤ j ≤ r) (4.1)

form a basis for L and satisfy

||bj || ≤ (
√
kn+ 2)2

k−1
2 λj(Lr) (1 ≤ j ≤ r). (4.2)

This holds for every sublattice Lr which is spanned by a
subset of r linearly independent vectors of a1, . . . ,ak.

Lemma 4.2. Choose q as is [BK93, Theorem 4.1]. The
square length of the coefficient vectors m′

j (1 ≤ j ≤ r) that
transform the generators ai of L into a basis vector bj of

L as in Equation 4.1 is bounded by (αr−1

d(L)
·
√
r∆1,j)

2 + ∆2
2.

Here ∆1,j is the right-hand-side of Equation 4.2,

∆1,j = (
√
kn+ 2) · 2

k−1
2 · λj(Lr),

and Lr is any sublattice of L which is spanned by a subset of
r linearly independent vectors of a1, . . . ,ak. The quantity
∆2 is

∆2 =
√
k − r · 2

k−1
2

„
k
√
n

2
+
√
k

«
· αr

d(L)
.

Lemma 4.2 can be used to prove the following theorem which
shows that a basis of bounded length for L exists, for which
we can efficiently compute a good approximation.

Theorem 4.3. Let a1, . . . ,ak ∈ Rn generate a lattice L
of rank r, let µ be a lower bound on the shortest vector,
let α = max ||ai||, and let q be such that 2q ≥ (k2(k+1)/2 ·
max ||ai||)r/(µdet(L)2).

Given approximations of a1, . . . , ak ∈ Rn with q bits of
precision, a basis ĉ1, . . . , ĉr for L can be computed in time
polynomial in q, where the exact vectors cj satisfy

||cj || ≤ (
√
kn+ 2)2

k−1
2 · λj(L).

The absolute error on each output vector ĉi is bounded by
rkγ1γ3

√
n/2q+1.

Here γ1 =

r“
αr−1

det(L)

√
r∆1,n

”2

+ ∆2
2,

and

γ3 =

s„
(α′)r

d(L)
·
√
r · ||bj ||

«2

+

„√
k − r

√
k · (α′)r

d(L)

«2

,

with α′ = (
√
kn+ 2)2

k−1
2 α.

4.4 The algorithm for computing etO
Given t, compute a basis for etO:

1. Choose a polynomial q.

2. For each bit index j do the following:

3. Compute the diagonal matrix Tj , where (Tj)i,i = eri,j

for i < n, and (Tj)n,n = (e−1)
Pn−1

i=1 rij .

4. Compute Aj := Tj · O, and compute a short basis for
it using Theorem 4.3.

5. Square Aj j times, using j applications of ideal multi-
plication below.

6. Multiply the resulting ideals together. To multiply two
ideals B and C proceed as follows: Let the ideal B have
basis b1, . . . , bn and ideal C have basis c1, . . . , cn.

(a) Multiply pairwise columns to get n2 vectors
c1b1, c1b2, . . . , c1bn, c2b1, . . . cnbn.

(b) Use Theorem 4.3 to compute a short basis for BC.

(c) Truncate the precision to q bits.

Theorem 4.4. There is an algorithm that on input t ∈
Qn and δ computes a basis b̂1, . . . , b̂n that is δ-close to a
basis for etO, has bounded size, and runs in time polynomial
in log ∆, n, log ||t|| and log 1/δ.

Proof. We analyze the complexity of the algorithm given
above. By Thiel [Thi95] we can take the initial precision
as high as we need in Step 3 and Step 4. The main step
in the algorithm consists of multiplying ideals B and C,
so it is enough to show that each multiplication step BC
can be done efficiently, and that we can bound the loss of
precision. By Lemma 4.1 we can compute n2 generators for
BC from n generators for B and n from C and bound the
loss of precision. By Theorem 4.3, we can compute a basis
approximating b1, . . . , bn for BC in polynomial time, with

||bj || ≤ (
√
n3 + 2)2

n2−1
2 · λj(BC).

The loss of precision for the squaring step is bounded in
Theorem 4.3. Therefore we may choose the initial number
of precision bits q to be high enough to satisfy δ at the
end.

5. THE QUANTUM REPRESENTATION OF
LATTICES

The representation of a lattice by a basis is not unique,
which makes it unsuitable for use in an algorithm that deals
with quantum superpositions of lattices. To avoid this issue,
we will represent each lattice by a unique quantum state,

298

namely, a superposition of the lattice points with certain
weights. Let us first discuss some desired properties of such
a representation. We want a small deformation of the lattice
to result in a small change in the quantum state, whereas
substantially different lattices should be mapped to almost
orthogonal vectors. These requirements can be formalized
as follows.

Definition 5.1. Let dist(x, y) denote the distance bet-
ween two points in a metric space X, and let H be some
Hilbert space. A map f : X → H is called an (a, r, ε) quan-
tum encoding if the following conditions are met:

1. 〈f(x)|f(x)〉 = 1 for all x ∈ X;

2.
‚‚|f(x)〉 − |f(y)〉

‚‚ 6 a · dist(x, y) for all x, y ∈ X;

3. If dist(x, y) > r, then
˛̨
〈f(x)|f(y)〉

˛̨
6 ε.

Given such an encoding, the vector |f(x)〉 is called the sig-
nature state for x.

The number a in condition 2 is called a Lipschitz constant
of the function f . When X = Rn (or, more generally, when
X is a Riemannian manifold), f can be approximated by a
smooth function to an arbitrary precision in the sup-norm
at cost of an arbitrary small parameter change in the above
definition. For smooth functions, a is simply an upper bound
on the first derivative of f .

Lemma 5.2. Let f1 : X1 → H1 and f2 : X2 → H2 take
values in unit vectors and satisfy the Lipschitz condition with
constants a1 and a2, respectively.

a) If X1 = X2 = X, then the function f1 ⊗ f2 : X →
H1 ⊗H2 is (a1 + a2)-Lipschitz.

b) If X1 and X2 are Euclidean spaces, then the function
g : X1×X2 → H1⊗H2 defined as g(x1, x2) = f1(x1)⊗
f2(x2) is a-Lipschitz, where a =

p
a2
1 + a2

2.

Example 5.3 (Straddle encoding). A representati-
on of real numbers by quantum superposition of integers can
be defined as follows:˛̨

strν(x)
¸

= cos
`

π
2
t
´
|k〉+ sin

`
π
2
t
´
|k + 1〉,

where k = bx/νc, t = x/ν − k.

The map strν : R → CZ is a
`

π
2ν
, 2ν, 0

´
quantum encoding.

Applying this map to each coordinate on an n-dimensional
real vector, we obtain a

`
π
2ν

√
n, 2ν

√
n, 0

´
encoding strν,n :

Rn →
`
CZ´⊗n

(by statement (b) of Lemma 5.2).

We usually set ν = 2−q. The transformation |x〉 7→ |x〉 ⊗
| strν(x)〉 can be implemented efficiently if we assume that x
is represented as 2−lx̃, where l > q and x̃ is an integer, which
is actually stored in the quantum memory. (In practice, l
should be substantially greater than q so that the rounding
error in x does not matter.) To construct |x〉 ⊗ | strν(x)〉
from |x〉, we compute k and t, create the state cos

`
π
2
t
´
|0〉+

sin
`

π
2
t
´
|1〉, add k, and reverse the computation of k and t.

A full-rank lattice L ⊆ Rn may be represented by a su-
perposition of its points with Gaussian amplitudes. Each

lattice point is in turn represented using the straddle encod-
ing. Thus,

|f(L)〉 = γ−1/2
X
x∈L

e−π‖x‖2/s2 ˛̨
strn,ν(x)

¸
. (5.1)

Here γ =
P

x∈L e
−2π‖x‖2/s2

.
We must prove the HSP properties for this state when

the lattice L is of the form etO. To prove that the states
over different ideal lattices have small inner product when
t1 − t2 is not near a lattice point we need the following
lemma showing that the two corresponding ideal lattices do
not have too many points close to each other.

Lemma 5.4. Let et1 and et2 be vectors of algebraic norm
1. If some nonzero point of et1O is equal to some point of
et2O and has length at most R, then the distance between
any unequal pair of points, one from et1O and one from
et2O, is at least

√
n/Rn.

Proof. Suppose et1a = et2b (a, b ∈ O) is a point in
the intersection of et1O and et2O and has length at most
R. Since the length of et1a is at most R, each coordinate of
et1a is bounded by R, and hence the norm of et1a, which
is the product over all coordinates, is bounded by Rn. Since
et1 has norm 1, the norm of a is then bounded by Rn as
well. To see how close points in et1O and et2O can be
(without being equal) we consider the minimum distance of
points in the lattice et1O + et2O.

To compute this lattice we first compute et1−t2O + O:
Since et1a = et2b we have b/a = et1−t2 . So et1−t2O +
O = (b/a)O + O. Let N(a) denote the norm of a. (I.e.,
N(a) = N(a1) =

Q
ai, where a = (a1, . . . , an).)

Claim: (b/a)O +O ⊆ 1
N(a)

O.

Proof of claim: Clearly O ⊆ 1
N(a)

O. Let a = (a1, . . . ,

an) ∈ O. Since each ai satisfies the same minimal polyno-
mial as a1 they are all algebraic integers, and hence so is
the product

Qn
i=2 ai. Since a2 · a3 · · · · · an = N(a)/a1, the

product is also in K and hence it is in O. Then b1 ·a2 · · · · ·an

is in O as well. Thus

(b1/a1)O =
b1 · a2 · · · · · an

N(a1)
O ⊆ 1

N(a1)
O.

Hence (b/a)O + O ⊆ 1
N(a)

O. This proves the claim and

shows that et1−t2O +O ⊆ 1
N(a)

O.

The shortest vector in O is (1, . . . , 1) which has length√
n. Since we showed that N(a) ≤ Rn, this implies that the

shortest vector in 1
N(a)

O has length at least
√
n/Rn.

Now we consider et1O + et2O. By the above argument

et1O + et2O = et2(et1−t2O +O) ⊆ 1

N(a)
et2O.

Since the shortest vector in et2O has length at least
√
n, the

shortest vector in et1O + et2O has length at least
√
n/Rn.

Hence points in et1O and et2O, which are not equal, are at
least

√
n/Rn apart.

The following lemma helps bound the overlap between two
lattices.

Lemma 5.5. Suppose we are given lattices L and L′, and
sublattices I ⊆ L and I ′ ⊆ L′. Assume there is a 1-1 corre-
spondence h : I → I ′ s.t., for any (x, x′) ∈ L̃× L̃′,

299

1. if (x, x′) ∈ C := {(u, v) ∈ I × I ′ : v = h(u)}, then
‖x− x′‖ ≤ ε,

2. otherwise ‖x− x′‖ ≥ 2ν
√
n.

If I (L and I ′ (L′, then for any n ≥ 5, 〈f(L)|f(L′)〉 ≤
3/4 if in addition s ≥ 4πn3 max{λn(L), λn(L′)}.

Lemma 5.6. Let ν 6 λ
2
√

n
and s > c n (

√
n/λ)

n−1
d for

a certain constant c, and let us restrict the encoding L 7→
|f(L)〉 to lattices with d(L) 6 d and λ1(L) > λ. On such
lattices, f has a Lipschitz constant

a =

√
πn s

4ν
+ 1.

Next we can choose the parameters to show that the hid-
den subgroup property holds. Since the inner product is at
most a constant < 1, a tensor product of n copies will reduce
the inner product to be exponentially small. For simplicity,
we state the theorem only for the free part of the unit group
Log O∗ ≤ Rs+t−1, and for elements of norm 1.

Theorem 5.7. Let s = 22n
√
nD, ν = 1/(4n(s

√
n)2n).

Let t1, t2 ∈ Rn. Let γ = (γ1, . . . , γn) be t2− t1−u, where u
is the unit closest to t2 − t1 in Log O∗. Then the function

f is a-Lipschitz with constant a =
√

πn s
4ν

+ 1.

The inner product 〈et1O|et2O〉 is at most 3/4 if for some
i, we either have ln

`
1− (s

√
n)n−12ν

√
n
´
≥ γi or γi ≥

ln
`
1 + (s

√
n)n−12ν

√
n
´
.

The idea is as follows: fix an ideal et1O. We want to
bound its inner product with ideals et2O. First we show
that when the two lattices have points inside the ball of ra-
dius s

√
n where they overlap exactly, then their inner prod-

uct must be small (unless the two lattices coincide, i.e. when
t2−t1 is a unit). Then we show that this inner product does
not get bigger when we perturb one of the lattices slightly.
Finally, we show that when two lattices are not close to hav-
ing an exact point of intersection, then their inner product
is small as well.

Finally, it can be shown that a good approximation of
these states can be computed when evaluated on rational
numbers. First an approximate basis is computed using the
algorithm in the last section, and then the superposition is
created over the points.

6. THE HIDDEN SUBGROUP PROBLEM
ON A CONTINUOUS GROUP

The HSP algorithm for Rm can be thought of in the usual
structure, however the analysis is difficult, and we combine
phase estimation and our new continuous definition of the
HSP to get it to work. The analysis works in continuous
space and is discretized in a general way to derive the al-
gorithm. The algorithm creates a superposition of points in
Rm with a sufficiently broad wavefunction w. We cannot
measure in the Fourier basis of the continuous group, but
we show that phase estimation can be used to approximate
this to measure a point u of the reciprocal lattice L∗ with
the probability distribution

qu =
1

d(L)2

Z
(Rm/L)2

〈f(x′)|f(x)〉 e2πi〈x−x′,u〉 dx dx′. (6.1)

This distribution is not close to uniform but we are able
to show that the probability of staying in any sublattice is
bounded. For rounding, the samples deviate from the lattice
points by, roughly, the inverse width of the wavefunction
w. We show that the reconstruction of a lattice from an
approximate generating set can be done using an improved
analysis of [BK93] in Section 4.3. It can be shown that the
condition number of a reduced basis is bounded so that the
dual lattice, which is the hidden subgroup, can be computed.
These provide the main ingredients in the full proof.

Theorem 6.1. There is a polynomial time quantum algo-
rithm for solving the HSP over Rm.

In Section 6.2 we outline the steps of the algorithm and
indicate how to derive the probability expression. First we
show that the known cases of the Abelian HSP can be re-
duced to the new continuous case in Definition 1.1 over the
HSP instance Rm.

6.1 Application: Reduction to G = Rm

Our HSP algorithm is applicable to Abelian groups of the
form Rk × Zl × (R/Z)s × H, where H is finite. We call
such groups “elementary”. The reduction to G = Rk × Zl is
straightforward. In the case of interest, the hidden subgroup
L is a full-rank lattice in G ⊆ Rk×Rl such that λ1(L∩Rk) >
λ and d(L) 6 d for some fixed numbers λ and d. We now

describe the further reduction to the group G̃ = Rk+l.
The main idea can be illustrated in the one-dimensional

case, where the parameter λ has no meaning. We embed
G = Z into G̃ = R in the standard way, set ν = 2−q for
some q > 2, and define the R-oracle g in terms of the Z-
oracle f as follows:˛̨

g(x)
¸

= c0
˛̨
strν(t)

¸
⊗
˛̨
f(s)

¸
+

c1
˛̨
strν(t− 1)

¸
⊗
˛̨
f(s+ 1)

¸
, (6.2)

where s = bxc, t = x− s, c0 = cos
`

π
2
t
´
, c1 = sin

`
π
2
t
´
.

It is clear that g is a continuous function. If f is a periodic
function, then g is also periodic with the same period.

To construct the state |g(x)〉 using the original oracle f ,
we compute s and t, use them as parameters in the following
sequence of operations, and “uncompute” s and t:

|0〉 7→
X

z

cz|z〉 7→
X

z

cz |z〉 ⊗
˛̨
f(s+ z)

¸
7→
X

z

cz
˛̨
strν(t− z)

¸
⊗
˛̨
f(s+ z)

¸
,

where z ∈ {0, 1}. The last step, |z〉 7→ | strν(t − z)〉, re-
quires that we discriminate between the states | strν(t)〉 and
| strν(t − 1)〉. This is easy because the supports of those
states on the ν-grid do not overlap.

Let us now consider the general case, G = Rk × Zl. The
group G is embedded in G̃ = Rk+l by scaling the Z factors
by λ. This is to guarantee that λ1(L̃) > λ, where L̃ is the
image of L under the embedding. The other condition on
the new hidden subgroup reads: d(L̃) 6 d̃, where d̃ = dλl.
The generalization of Eq. (6.2) is straightforward:

˛̨
g(x, x1, . . . , xl)

¸
=

X
z1,...,zl∈{0,1}

lO

j=1

|ψ(xj , zj)〉

!
⊗
˛̨
f(x, s(x1, z1), . . . , s(xl, zl)

¸
, (6.3)

300

where s(x, z) = bx/λc + z, |ψ(x, z)〉 = cos
`

π
2
t
´ ˛̨

strν(t)
¸
,

with t = x/λ− s(x, z).
Note that the terms in the above sum are mutually or-

thogonal vectors. It can be shown that g has parameters

ã2 = a2 + l
`

π
2νλ

(1 + ν)
´2

, r̃2 = r2 + l(2νλ)2 and ε.

6.2 An HSP algorithm for the group Rm

Let f be an (a, r, ε) oracle function for some full-rank lat-
tice L ⊆ Rm such that λ1(L) > λ and d(L) 6 d (see Def-
inition 1.1). The core part of our algorithm is a sampling
subroutine that generates an approximation to a random
point of the reciprocal lattice L∗. It works under certain
assumptions about the oracle parameters.

Let ω : R → C be some Lipschitz function with unit L2-
norm supported on the interval [0, 1]. For example,

ω(x) =

(√
2 sin(πx) for x ∈ [0, 1],

0 otherwise.
(6.4)

Let us also choose a sufficiently large number ∆ = 2q1 and
a sufficiently small number δ = 2−q2 . Define

w(x1, . . . , xm) =
1

∆m/2

mY
j=1

ω
“xj

∆

”
, (6.5)

wδ = w|δZm

`
restriction of w to the lattice δZm´.

In our calculations, we will use the following variables:

Real domain: x = δx̃ ∈ δZm or x̃ ∈ Zm;

Fourier domain: y = δ−1ỹ ∈ Rm/δ−1Zm or ỹ ∈ Rm/Zm.

We first create the superposition of points x with the
wavefunction wδ. In the quantum computer, x is actually
represented by x̃, therefore the initial state may be written
as follows:

|wδ〉 = δm/2
X

x̃∈Zm

w(x)|x̃〉 with x = δx̃.

(Our choice of the function ω guarantees the correct normal-
ization on the δ-grid; otherwise we would need to multiply
the above expression by some factor that tends to 1 as δ
tends to 0.) Then we apply the oracle to get the state

|ψδ〉 = δm/2
X

x̃∈Zm

w(x) |x̃〉 ⊗ |f(x)〉 with x = δx̃. (6.6)

The quantum register containing f(x) may be ignored, and
we would like to measure the other register in the Fourier
basis,

|ξỹ〉 = F−1
Zm |ỹ〉 =

X
x̃∈Zm

e−2πi〈x̃,ỹ〉|x̃〉, where ỹ ∈ (R/Z)m.

An obvious procedure would be to perform the Fourier trans-
form and measure in the standard basis. However, a quan-
tum computer can only do the Fourier transform over a finite
group, and the resulting approximation errors are difficult
to analyze. Therefore we use a different method.

Note that |ξỹ〉 is an eigenvector of the mutually com-
muting translation operators Te1 , . . . , Tem , where ej (j =
1, . . . ,m) are the generators of the group Zm. The transla-
tion by h ∈ G on an Abelian group G is defined as follows:

Th : L2(G) → L2(G), (Thf)(x) = f(x− h). (6.7)

Thus, the Fourier measurement is equivalent to measuring
the eigenvalues of the unitary operators Tej . A general pro-
cedure for the eigenvalue measurement (a.k.a. phase estima-
tion) is described in [Kit95]. To illustrate the difference from
the direct use of discrete Fourier transform, let us consider
a variant of the phase estimation. In the following circuit,
the Fourier transform FH on the group H = (Z2q)m acts on
a set of ancillary qubits.

Here W |h, x̃〉 = |h, x̃+h〉. For each value of h, the operator

W acts on x̃ as Th1
1 · · ·Thm

m . Note that the “+” in the defi-
nition of W means the addition of integer vectors, which are
not reduced modulo 2q. Thus, W preserves the decomposi-
tion of |ψδ〉 into the vectors |ξỹ〉. The measurement outcome
z may be regarded as a random variable conditioned on ỹ,
and the latter can be inferred from the former with some
precision and confidence. The final result of the sampling
subroutine, Y = −δ−12−qzj provides an approximation for
y. The error bound for this procedure is pretty standard.

Lemma 6.2. For each j, the probability that the inferred
value Ỹj = −2−qzj deviates from ỹj by > ν̃ is at most 2−q/ν̃.
Thus, Y approximates y with precision ν in each coordinate,
up to an error probability µmeas = m2−q/(δν).

To further analyze the sampling subroutine, we approxi-
mate the probability distribution pδ(y) of the variable y =
δ−1ỹ by the distribution p that occurs in the δ → 0 limit.
These two distributions are derived from the following quan-
tum states (cf. Eq. (6.6)):

|ψδ〉 = δm/2
X

x̃∈Zm

|x̃〉 ⊗ |ψ(x)〉, |ψ〉 =

Z
Rm

|x〉 ⊗ |ψ(x)〉 dx,

where |ψ(x)〉 = w(x)|f(x)〉. (The function w : Rm → C is
given by Eq. (6.5); the hidden subgroup oracle f and, thus,
the function ψ, are vector-valued, i.e. f, ψ : Rm → H.) More
exactly, pδ and p are related to the Fourier transform of ψδ

and ψ, respectively:

pδ(y) =
˙ bψδ(y)

˛̨ bψδ(y)
¸

with bψδ = FδZmψ;

p(y) =
˙ bψ(y)

˛̨ bψ(y)
¸

with bψ = FRnψ. (6.8)

It can be shown that pδ is close to p.

Let us now focus on the distribution p(y) =
˙ bψ(y)

˛̨ bψ(y)
¸
.

We have

ψ = wf, bψ = bw ∗ (FRmf), where bw = FRmw.

Since f is a hidden subgroup oracle, we may regard it as a

function on Rm/L and define bf = FRm/Lf . That is,

bfu =

Z
Rm/L

e2πi〈x,u〉f(x) dx for u ∈ L∗,

f(x) =
1

d(L)

X
u∈L∗

e−2πi〈x,u〉 bfu. (6.9)

301

The Fourier transform over Rm is

(FRmf)(y) =

Z
Rm

e2πi〈x,y〉

1

d(L)

X
u∈L∗

e−2πi〈x,u〉 bfu

!
dx

=
1

d(L)

X
u∈L∗

bfu δ(y − u).

It follows thatbψ(y) =
` bw ∗ (FRmf)

´
(y) =

1

d(L)

X
u∈L∗

bfu bw(y − u), (6.10)

p(y) =
1

d(L)2

X
u,u′∈L∗

˙ bfu′
˛̨ bfu

¸ bw(y − u) bw(y − u′). (6.11)

The last equation is complicated, but to have a good ap-
proximation it is enough to keep the terms with u = u′. Let
us consider the quantum state FRm |ψ〉 whose wavefunction
is given by Eq. (6.10). It consists of identically shaped peaks
at the points u ∈ L∗. Each peak has a weight

qu =

˙ bfu

˛̨ bfu

¸
d(L)2

=
1

d(L)2

Z
e2πi〈x−x′,u〉˙f(x′)

˛̨
f(x)

¸
dx dx′,

where the integral is over (Rm/L)2. The numbers qu can
be interpreted as probabilities because they are nonnegative
and add up to 1. Indeed, let us normalize f to make a
function of unit norm, g(x) = d(L)−1/2f(x). ThenX

u∈L∗

qu =
1

d(L)

X
u∈L∗

˙bgu

˛̨bgu

¸
=
˙bg ˛̨bg ¸ = 〈g|g〉 = 1.

7. REFERENCES
[Ban93] W. Banaszczyk. New bounds in some

transference theorems in the geometry of
numbers. Mathematische Annalen,
296(1):625–635, 1993.

[BK93] Johannes Buchmann and Volker Kessler.
Computing a reduced lattice basis from a
generating system, 1993. Preprint, August 4,
1993.

[BP87] Johannes Buchmann and Michael Pohst.
Computing a lattice basis from a system of
generating vectors. In Eurocal’87, volume 378
of LNCS, pages 54–63. Springer-Verlag, June
1987.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan.
Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In
Advances in cryptology—CRYPTO 2011,
volume 6841 of LNCS, pages 505–524. Springer,
2011.

[Coh93] Henri Cohen. A course in computational
algebraic number theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1993.

[FIM+03] Katalin Friedl, Gabor Ivanyos, Frederic
Magniez, Miklos Santha, and Pranab Sen.
Hidden translation and orbit coset in quantum
computing. In Proceedings of the Thirty-Fifth
Annual ACM Symposium on Theory of
Computing, San Diego, CA, 9–11June 2003.

[GH11] C. Gentry and S. Halevi. Implementing
gentry’s fully-homomorphic encryption scheme.
Eurocrypt 2011, pages 132–150, 2011.

[GKP01] Daniel Gottesman, Alexei Kitaev, and John
Preskill. Encoding a qubit in an oscillator.
Phys. Rev. A, 64:012310, Jun 2001.

[GVL96] Gene H. Golub and Charles F. Van Loan.
Matrix Computations. Johns Hopkins
University Press, Baltimore, MD, 3rd edition,
1996.

[Hal05] Sean Hallgren. Fast quantum algorithms for
computing the unit group and class group of a
number field. In Proceedings of the 37th Annual
ACM Symposium on Theory of Computing,
pages 468–474, 2005.

[Hal07] Sean Hallgren. Polynomial-time quantum
algorithms for Pell’s equation and the principal
ideal problem. Journal of the ACM, 54(1):1–19,
2007.

[HMR+10] Sean Hallgren, Cristopher Moore, Martin
Rötteler, Alexander Russell, and Pranab Sen.
Limitations of quantum coset states for graph
isomorphism. J. ACM, 57:34:1–34:33,
November 2010.

[Kit95] Alexei Kitaev. Quantum measurements and the
abelian stabilizer problem, 1995.
quant-ph/9511026.

[KW08] Alexei Kitaev and William A. Webb.
Wavefunction preparation and resampling
using a quantum computer, January 2008.
arXiv:0801.03422.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded
Regev. On ideal lattices and learning with
errors over rings. In Advances in
cryptology—EUROCRYPT 2010, volume 6110
of LNCS, pages 1–23. Springer, 2010.

[Mic08] Daniele Micciancio. Efficient reductions among
lattice problems. In Proceedings of SODA 2008,
pages 84–93, New York, 2008. ACM.

[PR07] Chris Peikert and Alon Rosen. Lattices that
admit logarithmic worst-case to average-case
connection factors. In STOC ’07: Proceedings
of the thirty-ninth annual ACM symposium on
Theory of computing, pages 478–487, New
York, NY, USA, 2007. ACM Press.

[San91] Jonathan W. Sands. Generalization of a
theorem of Siegel. Acta Arith., 58(1):47–57,
1991.

[Sho97] Peter W. Shor. Polynomial-time algorithms for
prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on
Computing, 26(5):1484–1509, 1997.

[SV05] Arthur Schmidt and Ulrich Vollmer.
Polynomial time quantum algorithm for the
computation of the unit group of a number
field. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages
475–480, 2005.

[Thi95] Christoph Thiel. On the complexity of some
problems in algorithmic algebraic number
theory. PhD thesis, Universität des Saarlandes,
Saarbrücken, Germany, 1995.

302

