# NONLOCAL GAMES FROM QUANTUM CODES

**ZHENGFENG JI** 

UNIVERSITY OF TECHNOLOGY SYDNEY

## **OUTLINE**

- Nonlocal Games
- There Different Designs of Games for Codes
- Rigidity: Techniques and Applications
- Conclusions

# **NONLOCAL GAMES**

#### INTRODUCTION

#### **Nonlocal Games**

One-round multi-player game with entangled players

- 1. Referee V samples a pair of questions (s,t), sends s,t to the players A and B respectively.
- 2. Players A and B measure their entangled systems and respond with answers a,b.
- 3. The referee accepts or rejects using predicate V(a,b|s,t).



#### BACKGROUND

- Computer Science
  - Multi-prover interactive proofs (MIP), PCP theorem (PCP), parallel repetition theorem
- Constraint-Variable Game for SAT problems  $(x_1 ee x_2 ee x_4) \wedge (
  eg x_2 ee x_3 ee x_4) \wedge \cdots$
- Graph Coloring Game for graphs
- The power of the second player
- The power of entangled players



## Physics

Bell inequalities: quantum mechanics versus local hidden variable theories



$$\langle A_0B_0+A_0B_1+\ A_1B_0-A_1B_1
angle \leq 2$$

[Bell '64] [Clauser, Horne, Shimony and Holt '69]

# **CHSH GAME**

#### **CHSH GAME**

V randomly samples  $s,t\in\{0,1\}$ and accepts if and only if

$$a \oplus b = s \wedge t$$
.





## Optimal strategy

EPR state:  $(\ket{00}+\ket{11})/\sqrt{2}$ 

Alice: X, Z

Bob: 
$$X'=rac{X+Z}{\sqrt{2}}, \quad Z'=rac{X-Z}{\sqrt{2}}$$



Rigidity

#### **CHSH RIGIDITY**

## Optimal strategy

EPR state:  $(\ket{00}+\ket{11})/\sqrt{2}$ 

Alice: X, Z

Bob: 
$$X'=rac{X+Z}{\sqrt{2}}, Z'=rac{X-Z}{\sqrt{2}}$$

## Rigidity

Ask Alice to measure X, Z; ask Bob to measure  $X^{\prime}, Z^{\prime}$ 

#### Jordan's Lemma

Measurement specification questions

 $\mathsf{CHSH} : a \oplus b = s \wedge t$ 





#### FROM STATES TO SUBSPACES

Stabilizer formalism

[Gottesman '97]

Pauli group:

$$igg\{ e^{i\phi} igotimes_{j=1}^n D_j, ext{ for } \phi \in \{0, \pi/2, \pi, 3\pi/2\}, \ D_j \in \{I, X, Y, Z\} igg\}.$$

- $^{,}$  A stabilizer is an abelian subgroup of the Pauli group not containing -I.
- The subspace stabilized by the stabilizer

| Examples       | Stabilizer                                           |
|----------------|------------------------------------------------------|
| EPR            | $\langle XX,ZZ  angle$                               |
| GHZ            | $\langle XXX,ZIZ,ZZI  angle$                         |
| [4, 2, 2] Code | $\langle XXXX,ZZZZ  angle$                           |
| Graph states   | $\langle X_u \otimes igotimes_{v \sim u} Z_v  angle$ |
| [5, 1, 3] Code | $\langle XZZXI, IXZZX, XIXZZ, ZXIXZ \rangle$         |

#### **CHSH GAME REVISITED**

Stabilizer formalism

The EPR state is stabilized by XX, ZZ.

$$\langle XX + ZZ \rangle = 2$$
 $X = \frac{X' + Z'}{\sqrt{2}}, Z = \frac{X' - Z'}{\sqrt{2}}$ 
 $\langle XX' + XZ' + ZX' - ZZ' \rangle = 2\sqrt{2}$ 

 $\mathsf{CHSH} : a \oplus b = s \wedge t$ 





### **CHSH GAME REVISITED**

The twist of the  $\pi/4$  basis rotation in the optimal strategy

$$X'=rac{X+Z}{\sqrt{2}}, Z'=rac{X-Z}{\sqrt{2}}$$

- Why measurement specifications XX, ZZ won't work directly?
- For the singlet state  $(|01
  angle |10
  angle)/\sqrt{2}$

|   | I | Χ  | Υ  | Z  |
|---|---|----|----|----|
| I | 1 | 0  | 0  | 0  |
| X | 0 | -1 | 0  | 0  |
| Υ | 0 | 0  | -1 | 0  |
| Z | 0 | 0  | 0  | -1 |





## STABILIZER GAMES: METHOD I

• Special-player Stabilizer Game: apply the  $\pi/4$  twist to the special player

- Special player: the third player
- Another view Regrouping the players: (1,2,4) versus (3).
- No full rigidity, but partial rigidity
   The special player must measure honestly!



#### PARTIAL RIGIDITY OF THE SPECIAL-PLAYER GAME

**Lemma** (Partial Rigidity). For any quantum strategy  $\mathcal{S}=(\rho,\{R_w^{(i)}\})$  of the special-player stabilizer game whose value is  $\epsilon$ -close to the optimal value (nonlocal value), there exists an isometry  $V:\mathcal{H}_3\to\mathbb{C}^2\otimes\hat{\mathcal{H}}_3$  such that

$$R_3^{(3)} = V^*(Z'\otimes I)V, \ R_2^{(3)} pprox_{\sqrt{\epsilon}} V^*(X'\otimes I)V.$$

Follows the CHSH rigidity proof very closely.

### STABILIZER GAME I

- The stabilizer game is a 4-player game with 2-bit questions and single-bit answers
- With equal probability, the verifier performs
  - 1. Random special-player games
  - 2. Direct checking of the stabilizer encoding

- Optimal strategy: share any state in the code space and measure honestly
- Recover full rigidity

# MERMIN'S GHZ GAME

### MERMIN'S GHZ GAME REVISITED

Mermin's GHZ Game

- 1. A game between the referee and Alice, Bob and Charlie,
- 2. The referee samples questions  $(s,t,u) \in \{000,011,101,110\}$  uniformly at random,
- 3. The referee accepts if the parity of the answers equals the half of the Hamming weight of all questions.
- Stabilizer for the triangle graph state



## **ANTI-COMMUTATIVITY FROM STABILIZERS**

Stabilizer for the graph state of the triangle graph



- Think of the X, Z operators in the stabilizer as the players' observables and may not be anti-commuting at all
- Magic: Take the product of the stabilizer operators!
   Proves the anti-commutativity of X, Z for the second player.
- How about other players?

### STABILIZER GAMES: METHOD II

- Ideas from the Mermin's GHZ game
  - Products of stabilizers such that exactly one column has the commutator product and all other columns cancel out completely
- Start with any quantum code, say, the [4,2,2] quantum error-detection code
- Concatenate it with [2,1,1] stabilized by YY
- A general recipe to construct rigid nonlocal games for stabilizer codes

| + | Χ | Z | Z |
|---|---|---|---|
| + | Z | Χ | Z |
| + | Z | Z | Χ |
| - | Χ | Χ | Χ |

#### STABILIZER GAMES: METHOD II

• An eight-qubit code with the following stabilizer generators





- Consider stabilizer operators without Y's
- Anti-commutativity from the products

### **EIGHT-PLAYER GAME: STABILIZER GAME II**

Let  $\Xi$  be the subset of stabilizer operators of XZ-form for the eight-qubit code. The stabilizer game for the eight-qubit code is the eight-player nonlocal game defined as follows.

| + | Χ | Χ | Χ | Χ | Χ | Χ | Χ | Χ |
|---|---|---|---|---|---|---|---|---|
| - | Z | Z | Χ | Χ | Χ | Χ | Χ | Χ |
| + | Χ | Z | Χ | Z | Χ | Z | Χ | Z |
| + | Z | Χ | Χ | Z | Χ | Z | Χ | Z |

- 1. The referee selects one of the 32 operators from  $\Xi$  uniformly at random. Let  $D^{(i)} \in \{X,Z\}$ ,  $s \in \{0,1\}$  be the i-th tensor factor and the sign of the chosen operator respectively.
- 2. For  $i \in [8]$ , the referee sends  $D^{(i)}$  to player (i) and receive a bit  $a^{(i)}$  back;
- 3. Accepts if  $\bigoplus_{i=1}^{8} a^{(i)} = s$  and rejects otherwise.

### RIGIDITY OF THE STABILIZER GAME II

Theorem. The nonlocal value of stabilizer game is 1. Furthermore, the game has the following rigidity property. Let  $\mathcal{S} = \left(\rho, \left\{\hat{D}^{(i)}\right\}\right)$  be a strategy for the stabilizer game whose value is at least  $1-\epsilon$ . Then, for all  $i\in[8]$ , there are isometries  $V_i:\mathcal{H}_i\to\mathbb{C}^2\otimes\hat{\mathcal{H}}_i$  such that

$$egin{aligned} \hat{Z}^{(i)} &= V_i^*(Z \otimes I) V_i, \ \hat{X}^{(i)} &pprox_{\sqrt{\epsilon}} V_i^*(X \otimes I) V_i. \end{aligned}$$

Rigidity from anti-commutativity

# **EXTENDED NONLOCAL GAMES**

#### **EXTENDED NONLOCAL GAME**

Nonlocal Games versus Extended Nonlocal Games

Question sets S,T, answer sets A,B, distribution  $\pi$  over  $S\times T$  and a function V that specifies the acceptance rule of the referee.

| Nonlocal Games          | V:A	imes B	imes S	imes T	o [0,1] |
|-------------------------|----------------------------------|
| Extended Nonlocal Games | V:A	imes B	imes S	imes T	o [0,I] |

[Johnston, Mittal, Russo and Watrous '16] [Tomamichel, Fehr, Kaniewski and Wehner '13]

- Equivalently, the referee possesses a quantum system which the players choose how to initialize; the referee may measure and then decide
- Single-player extended nonlocal games are already interesting
- An easier way to achieve rigidity

#### **EXTENDED EPR GAME**

Extended nonlocal game based on the stabilizer for EPR directly

|   |   |   |   |   | X | Х |
|---|---|---|---|---|---|---|
| Χ | Χ | + | Χ | 0 | Z | Z |
| Z | Z | + | Z | 1 | Χ | Χ |
|   |   |   |   |   | Z | Z |

- Anti-commutativity and rigidity
- To achieve close-to-optimal value, the player must initialize the EPR state and measure honestly!

Simplest example with rigidity?

#### **PROPAGATION GAMES**

Reflections  $R_1,R_2,\ldots,R_n$ . A sequance  $\mathfrak{R}=(R_{\zeta_i})_{i=1}^N$  of reflections with indices  $\zeta_i\in[n]$ 



The propagation game is an extended nonlocal game in which the referee possesses a quantum system  $\mathbb{C}^{N+1}$  and

- 1. selects an  $i \in [N]$  uniformly at random and sends the index  $j=\zeta_i \in [n]$  to the player and receives an answer bit a;
- 2. performs the projective measurement  $\Pi_i$  on his system and accepts if the outcome is 2 or equals to a.

#### RIGIDITY FOR PROPAGATION GAMES

Beyond QECC: The history state subspace

$$rac{1}{\sqrt{T+1}} \sum_{t=0}^T \ket{t} \otimes R_{\zeta_t} R_{\zeta_{t-1}} \cdots R_{\zeta_1} \ket{\psi},$$

EPR is a history state of X propagation

- Theorem. Any strategy that has value at least  $1-\epsilon$  must use shared state that is  $N^{3/2}\epsilon^{1/2}$ -close to a history state in trace distance.
- Constraint Propagation Games

Enforces the approximate linear constraints of reflections, including commutativity and anti-commutativity ( $R_1R_2R_1R_2=\pm I$ )

Multi-qubit rigidity without encoding

# **RIGIDITY**

### **APPROXIMATE STABILIZERS**

ho **Definition**. A contraction R (operator norm  $\leq 1$ )  $\epsilon$ -stabilizes state ho if

$$\operatorname{Re}\operatorname{Tr}_{\rho}(R)\geq 1-\epsilon.$$

- Lemma. If both  $R_0, R_1$   $\epsilon$ -stabilize  $\rho$ , their product  $R_0R_1$  also  $O(\epsilon)$ -stabilizes  $\rho$ .
- What did we mean by  $R_0 pprox_{\sqrt{\epsilon}} R_1$  in the statement of rigidity theorems?

$$\operatorname{Re}\operatorname{Tr}_{\rho}(R_0^*R_1)pprox_{\epsilon} 1.$$

Compare: 
$$\|(R_0-R_1)|\psi\rangle\|^2 \leq O(\epsilon)$$
.

From the condition that a strategy has value  $\epsilon$ -close to the nonlocal value, we have that the corresponding operators  $\epsilon$ -stabilizer state  $\rho$ .

### RIGIDITY FROM ANTI-COMMUTATIVITY

 $ilde{f Definition}.$  Two contractions  $R_0,R_1$  are  $\epsilon$ -anti-commuting if

$$\operatorname{Re}\operatorname{Tr}_{
ho}(R_0R_1R_0R_1)pprox_\epsilon-1.$$

Lemma. Let  $R_0, R_1$  be two traceless reflections such that

$$\operatorname{Re}\operatorname{Tr}_{
ho}(R_0R_1R_0R_1)pprox_\epsilon-1.$$

Then there exists a unitary  $V:\mathcal{H} o\mathbb{C}^2\otimes\hat{\mathcal{H}}$  such that  $R_1=V^*(Z\otimes I)V$  and

$$egin{array}{ll} R_1 &=& V^*(Z\otimes I)V, \ R_0 pprox_{\sqrt{\epsilon}} V^*(X\otimes I)V. \end{array}$$

Qubit from anti-commutativity

Where is the qubit?

## **MULTIPLE-QUBIT CASE**

- Where are the qubits?
- General idea: prove commutativity between operators for different qubits.

NP-hardness of nonlocal games

[Kempe, Kobayashi, Matsumoto et al. '08], [Ito, Kobayashi and Matsumoto '09], [J '13]

Confusability test, linearity test, and constraint propagation test

#### **CONFUSABILITY TEST**

- Ask Alice to measure qubits i, j at the same time, and Bob to measure one of the qubits (either i or j).
  - Intuition: as i,j are measured at the same time, the measurement operators corresponding to i and j is commuting
- Lemma. Let  $R_1,R_2,S_1,S_2$  be four reflections for Alice, and  $U_1,U_2$  be two reflections for Bob. If  $S_1,S_2$  commute, both  $R_1,S_1$  are  $\epsilon$ -consistent with  $U_1$ , and both  $R_2,S_2$  are  $\epsilon$ -consistent with  $U_2$ , then

$$\operatorname{Re}\operatorname{Tr}_{
ho}ig(R_1R_2R_1R_2ig)pprox_{\epsilon}1.$$

#### LINEARITY TEST AND CONSTRAINT PROPAGATION

Nonlocal linearity test

[Natarajan and Thomas Vidick '15]

Similar to the confusability test, but more: A(a)A(b)A(a+b)=I.

Constraint propagation game

[J '16]

An extended nonlocal game that enforces commutativity directly as a constraint  $(R_0R_1R_0R_1=I)$ .

$$rac{1}{\sqrt{5}}ig(|0
angle|\psi
angle+|1
angle R_1|\psi
angle+|2
angle R_0R_1|\psi
angle+\ |3
angle R_1R_0R_1|\psi
angle+|4
angle R_0R_1R_0R_1|\psi
angleig).$$

# MULTI-QUBIT RIGIDITY FORM THE MAGIC ISOMETRY

[McKague '16], [Fitzsimons and Vidick '15], [J '15] [Chao, Reichardt, Sutherland and Vidick '17]

For  $D \in \{X,Z\}$  and  $u \in [n]$ , define three versions of operators

| Accents       | Meanings                            |
|---------------|-------------------------------------|
| $\hat{D}_u$   | From the strategy                   |
| $	ilde{D}_u$  | Exactly anti-commuting, overlapping |
| $\check{D}_u$ | Pauli operators, up to isometry     |

Isometry: Add EPRs and SWAP sequentially!

$$egin{aligned} W_u &= (I \otimes V_u^*) \operatorname{SWAP}_u(|\operatorname{EPR}
angle_u \otimes V_u), \ V &= W_n W_{n-1} \cdots W_1, \ \check{D}_u &= V^* (D_u \otimes I) V. \end{aligned}$$

An equivalent definition:

$$\check{D}_u = \mathcal{T}_1 \circ \cdots \circ \mathcal{T}_2 \circ \mathcal{T}_{u-1}( ilde{D}_u), ext{ where} \ \mathcal{T}_v(\sigma) = rac{
ho + ilde{X}_v \sigma ilde{X}_v + ilde{Z}_v \sigma ilde{Z}_v + ilde{X}_v ilde{Z}_v \sigma ilde{Z}_v ilde{X}_v}{4}.$$

- Prove that  $\check{D}_u$  and  $\tilde{D}_u$  are close by rearranging operators and the Cauchy-Schwarz inequality
- Similar to the techniques for the nonlocal games for states

  Constraint propagation game: no consistency on history states

## **APPLICATIONS**

Rigidity + Encoding

#### **APPLICATIONS**

- Quantum proofs
  - Nonlocal games are QMA-hard
  - Nonlocal games are NEXP-hard, needs more delicate constructions of extended nonlocal games
- Delegation of quantum computation
  - History state of the quantum computation as the shared entangled state
- Potential application in device-independent quantum information processing
  - Self-testing of multi-qubit entanglement
  - Device-independent quantum code encoding verification
  - Other DI quantum information processing tasks? Randomness amplification?

#### **CONCLUSIONS**

- Nonlocal Games from Quantum Codes
  - Three different methods
    - $\circ$   $\pi/4$ -rotation
    - YY concatenation
    - Extended games
  - Open Problems and Future Work
    - A complete study of stabilizer game constructions
    - Other methods?
    - o Go beyond anti-commutativity?
    - Other applications?

# **THANKS!**