
1

Winter 2018 CS 485/585 Introduction to Cryptography

Lecture 4

Portland State University Jan. 18, 2018
Lecturer: Fang Song

Draft note. Version: January 25, 2018. Email
fang.song@pdx.edu for comments and corrections.

Agenda

• (Last time) Computational Secrecy;

• OTP-PRG: Proof by Reduction

• Block cipher

Logistics

• Quiz 1 coming Tuesday. Covers all lectures so far, but mostly on
last three.

• Note card soliciting questions. Q& A last 20 minutes.

Proof of PRG-OTP

Recall the scheme, definitions of PRG and comp. secrecy.

Proof. Assume that there is an PPT adversary A such that

PrivKeav
A,Π(n) = 1/2 + ε(n), for ε(n) ≥ 1/p(n) ,

some polynomial p. We construct a distinguisher

Distinguisher D: Given input string w ∈ {0, 1}`(n)

1. Run A(1n) to obtain a pair of messages m0, m1 ∈ {0, 1}`(n)

2. Choose b← {0, 1}. Set c := w⊕mb.

3. Give c to A and obtain b′. Output 1 if b′ = b, and 0 otherwise.

We will demontrate that∣∣∣Pr[D(w) = 1 : w← {0, 1}`(n)]− Pr[D(w) = 1 : w = G(s), s← {0, 1}n]
∣∣∣ ≥ ε(n) ,

which shows a contradiction since it is supposed to be negligible
assuming G is a PRG.

2

• w ← {0, 1}`(n). If we look at what A sees in the reduction, the
challenge cipher c := w ⊕ mb is exactly what one gets from OTP
with uniformly (long) random key w. We know that Pr[b′ = b] =
1/2 by the perfect secrecy of OTP, and therefore Pr[D(w) = 1 :
w← {0, 1}`(n)] = 1/2.

• w = G(s), s ← {0, 1}n. Then A is playing exaclty the indistin-
guishablity game for Π, and hence Pr[D(w) = 1 : w = G(s), s ←
{0, 1}n] = Pr[PrivKeav

A,Π(n) = 1] = 1/2 + ε(n).

Therefore,∣∣∣Pr[D(w) = 1 : w← {0, 1}`(n)]− Pr[D(w) = 1 : w = G(s), s← {0, 1}n]
∣∣∣ = ε(n) ≥ 1/p(n) .

A few remarks:

• A stream cipher is basically a PRG but runs in a continuous mode.
We do not get into the details, and just identify stream ciphers
with PRGs.

• We will often say an output string of a PRG a pseudorandom
string, although this is totally nonsense. Similarly, it makes no
sense to say any fixed string is “random”. Rather, we mean that
the string is generated according to some distribution (pseudoran-
dom or uniformly random).

• Some basic questions: given a PRG with 1 bit surplus, how to get
more? (Think about it, and we will come back to it in the future)

Constructions of Stream ciphers.

• In theory. A beautiful theory. One-way functions (OWF) to PRG
(will see).

• In practice. Block cipher (counter mode) recommended for se-
curity. But efficient ad hoc designs exist. Linear-feedback shift
register (LFSR); a popular one: RC4 by Ron Rivest: WEP (Wired
Equivalent Privacy), WPA (Wireless Protected Access), vulnerabil-
ity of RC4 renders WEP completely broken.

Block ciphers

Now we come to the other main type of private-key ciphers: block
ciphers. Block ciphers are the work horse in cryptography (espeically
in private-key cryptography). Many examples will come soon.

The abstraction of block ciphers is the so called pseudorandom per-
mutations (PRPs). Without the restriction of being permutations, we
have the core primitive called pseudorandom functions (PRFs). PRF is

3

a generaliztion of PRGs. Instead of considering “random-looking”
strings, we cosider “random-looking” functions. Roughly, it means
that it behaves the same as a truly random function, at least as far as
an efficient observer is concerned. Once again, it makes no sense to
say any fixed function is pseudorandom (or random in any sense). It
refers to a distribution on functions. But before we talk about pseu-
dorandom functions, let’s be clear what we mean by a truly random
function.

Random functions. Consider F := { f : {0, 1}n → {0, 1}n} be the
collection of all possible functions that maps n-bit strings to n-bit
strings. Similar to what we mean by a random string, a random
function is just a sample from F uniformly at random. How many
are there? Well if we think about the truth table of a function f :
{0, 1}n → {0, 1}n, for each input string x there are 2n possible output
strings we can map it to. Therefore

|F | = 2n · 2n · . . . · 2n︸ ︷︷ ︸
2n times

= 2n2n
.

This means you need Ω(log |F |) = Ω(n2n) bits to sample or write
down the description of a random function.

There is a more intuitive and operational perspective of thinking
about a random function. Imagine yourself as a machine implement-
ing a random function, when an input x comes, you can just sample
a y ← {0, 1}n uniformly at random. The only thing you need to
make sure is maintain consistency, i.e., give the same answer if an
input comes again. This can be done by keeping a lookup table for
instance. This sample “on-the-fly” viewpoint will be useful for a lot
of the analysis in the future.

Pseudorandom functions. So how do we define random-looking func-
tions? We consider a collection of functions F := { fk : {0, 1}n →
{0, 1}n} ⊆ F indexed by k ∈ K. We assume K = {0, 1}n too for
simplicity. 1 F (a set of functions) can be equally viewed as a keyed 1 Here F is length-preserving. But in

general the domain and codomain need
not be the same.

function F : (k, x) 7→ fk(x).

F : {0, 1}`key(n) × {0, 1}`in(n) → {0, 1}`out(n) .

• Security parameter n.

• `key(n), `in(n), `out(n): the key length, input length and output
length.

• length-preserving: assuming `key(n) = `in(n) = `out(n) = n.

• efficient: for each k, there is an deterministic algorithm that on
input x computes F(k, x) in polynomial-time.

4

• Notation. For each k, Fk := F(k, ·) determines a function {0, 1}n →
{0, 1}n

How do we formalize “random-looking” for a function? How
about requiring no efficient distinguisher can tell apart fk for a ran-
dom k from a truly random function f ← F? But how do we specify
the function to a distinguisher D? It’s just too long (Ω(n2n)) to write
down an arbitrary function in F , and a poly-time D can only see a
tiny piece of it.

Instead we consider giving a distinguisher oracle access of func-
tion f . D f (·) means a oracle algorithm, where D can make multiple
queries xi and get responses yi := f (xi) during its execution.

Definition 1. Let F = { fk} ⊆ F , F is a pseudorandom function if

• F is efficient, i.e., fk(x) can be computed by a deterministic polynomial-
time (in n) algorithm.

• for any PPT distinguisher D,∣∣∣Pr[D fk(·)(1n) = 1 : k← {0, 1}n]− Pr[D f (·)(1n) = 1 : f ← F]
∣∣∣ ≤ negl(n) ,

Discussion on the definition.

• O(·) usually denotes an unspecified oracle.

• k is unknown to distinguisher, otherwise trivial to distinguish. PPT
D can make poly-many queries to O(·) at most.

• PRFs against unbounded adversaries impossible.

• An insecure example: Fk(x) = k⊕ x.

Pesudorandom permutations. Pseudorandom permutations are a spe-
cial case of PRFs. Let Π := {π ∈ S{0,1}n} be the set of permutations
on n-bit strings. We can define efficient, length-preserving, keyed per-
mutations F = { fk} ⊆ Π similarly, and we write f−1

k (·) as its inverse
permutation2. We define PRP as one that is indistinguishable from a 2 Here we require that fk and f−1

k both
can be computed efficiently.truly random permutation (of which you should be able to figure out

the meaning).

Definition 2. Let F be an efficient, length-preserving, keyed permu-
tation, F is a pseudorandom permutation if for any PPT distinguisher
D,∣∣∣Pr[D fk(·)(1n) = 1 : k← {0, 1}n]− Pr[Dπ(·)(1n) = 1 : π ← Π]

∣∣∣ ≤ negl(n) ,

5

We said earlier PRPs are a special case of PRF. But is this indeed
the case? Is a PRP necessarily a PRF? (Why non-trivial?) The an-
swer is yes as long as the domain of PRP is sufficiently large (super-
polynomial).

Proposition 3 ([KL: KL-Prop.3.17]). If F is a PRP and `in(n) ≥ n, then F
is also a PRF.

The critical observation is that a random permutation and a ran-
dom function are identical unless a collision occurs in the random
function. But how many samples are needed to see a collision on
average? FS NOTE: Exercise

The Proposition relies on the following claim.

Lemma 4. For any D making at most q queries∣∣∣Pr[D f (·)(1n) = 1 : f ← F]− Pr[Dπ(·)(1n) = 1 : π ← Π]
∣∣∣ ≤ O(q2/2n) .

Intuitively, this holds because as long as you don’t see a collision,
i.e. x 6= x′ with f (x) = f (x′), a RF and RP behave identically. We will
defer further discussion when we study hash functions.

Block ciphers are secure instances of PRPs of some fixed key-
length (e.g., 128-bit). Why call it a block cipher? It works on data
blocks of a fixed length, called the block-length, say 128-bits.

Immediate applications of PRFs/PRPs

• PRG from PRF (PRP). Let F = { fk} be a PRF or PRP.

G(s) := fs(0), fs(1), . . . , fs(k) .

This is a secure PRG (HW 2 [KL:]). As an immediate consequence,
we can implement a stream cipher from a block cipher (The re-
sulting cipher is sometimes called deterministic counter mode if it
is implemented by a block cipher). How about the converse? PRF
from PRG? Future lecture, stay tuned!

• A computationally secret encryption from PRP3: (G, E, D) 3 Exercise: prove it

– G : k← {0, 1}n.

– E : c := Fk(m).

– D : m := F−1
k (c).

Constructions of Block ciphers

• In theory: beautiful constructions from (OWF to) PRG to PRF to
PRP.

• In practice: next time.

	Proof of PRG-OTP
	Block ciphers
	Constructions of Block ciphers

