
1

Winter 2018 CS 485/585 Introduction to Cryptography

Lecture 2

Portland State University Jan. 11, 2018
Lecturer: Fang Song

Draft note. Version: January 25, 2018. Email
fang.song@pdx.edu for comments and corrections.

Agenda

• (Last time) History; Principles of modern Crypto; Defining secure
private-key encryption: brainstorming

• Perfect secrecy

• One-time Pad

• Limitations

Logistics

• HW1: elec. copy on webpage; start now, and come for help

• D2L: forward d2l email to your email account. Solutions will also
be posted on d2l

• Highly helpful: do the reading before class, and again (multiple
times) afterwards

Perfect secrecy of private-key encryption

Syntax of private-key encryption.

We introduce the following notations to speak of a general private-
key encryption scheme.

• Message/Plaintext space: M, set of all possible messages;

• Key space: K = {k}, set of all possible keys;

• Ciphertext space: C = {c}, set of all possible ciphertexts;

A private-key encryption scheme Π = (G, E, D) consists of three
algorithms1 1 All algorithms can be (and often have

to be) randomized (i.e., probabilistic). A
randomized algorithm is an ordinary
algorithm but can flip uniform coins at
each step. You can also think of a suffi-
ciently long string of random bits as an
additional input to the algorithm other
than the ordinary input. The reason for
allowing randomized algorithms will
become clear.

• G (Key-Gen Alg.): generate k ∈ K, must be randomized. Why?

• E (Encryption Alg.): K×M→ C, randomized or deterministic.

• D (Decryption Alg.): K× C →M. WLOG, D is deterministic.

2

The informal security definition we arrived at from last lecture
says that

Regardless of any information an attacker already has, a ciphertext should
leak no additional information about the underlying plaintext.

Probability theory is the right language to formalize it.

Space Distribution/r.v.
Plaintext M = {m} M

Ciphertext C = {c} C
Key K = {k} K

Notations:
• k ← G, c← Ek(m): getting output of

a randomized algorithm.

• x ← X: drawing an element x from
set X uniformly at random.

• M: random variable denoting the message, i.e., Pr[M = m] defines
the a priori distribution onM.

• K: random variable denoting the key generated by G.

• C = EK(M) the random variable denoting the resulting ciphertext
of encrypting a message under a random key.

Definition 1 ([KL: Def.2.3]). Π is perfectly secret if for every distribu-
tion overM, and every2 c ∈ C, 2 we need Pr[C = c] > 0 to avoid

conditioning on a zero-probability
event.

3

3 What’s the probability taken over,
i.e., what random experiment are we
considering, and what are the result-
ing sample space and distribution?
Here the random experiment is pick a
message according to the a prioi distri-
bution onM, and generate a random
key according to G, and produce a
ciphertext C = EK(M). Therefore the
probability is taken over the random
choices of both the message and the
key.

Pr(M = m|C = c) = Pr(M = m) . (1)

This precisely formulates the security goal we wanted. But there is
another component of a security definition we have not been explicit
about so far. That is the attack/threat model, i.e., what the attacker
is capable of: what resources are available, what are permitted and
what are not. The threat model implicit in the above definition is that
the attacker eavesdrops and observes one and only one ciphertext c,
and tries to figure out the underlying message. 4 4 It is important to keep in mind that

the attack model only specifies the
power that is available or allowed, but
does not make any assumption on
how an adversary uses the power. For
instance, in perfect secrecy once the
adversary gets the ciphertext, we don’t
care how it processes it; be it exploiting
a supercomputer or praying to god for
an answer.

Any security definition should specify precisely both security goal
and attack model, if not more. To reflect, perfect secrecy

• Security goal: a priori knowledge = a posteriori knowldge.

• Attack model: eavesdropping attack (once only). We will en-
counter other attack models in the future. Simple extension:
ciphertext-only attack, i.e., multiple ciphertexts; known-plaintext
attack; chosen-plaintext-attack; chosen-ciphertext-attack.

Our security goal in 1 can be interpreted in another way. Roughly,
if a ciphertext reveals no information about the plaintext, isn’t that
mean that encrypting two messages m and m′ should produce the
same distribution. In other words, fixed a ciphertext c, it m and m′

should be equally likely to get encrypted to c.

Definition 2. Π is perfectly secret if for every m, m′ ∈ M and every
c ∈ C

5 5 What’s the probability taken over? In
contrast to Def. 1, (m, m′, c) are all fixed.
The random choice of the key is the
only source of randomness.Pr(EK(m) = c) = Pr(EK(m′) = c) , (2)

3

Are the two definitions indeed equivalent? Namely is a scheme
secure according to one definition if and only if it is secure according
to the other definition?

Lemma 3. Definition 1 is equivalent to Definition 2 .

Proof. We need to show both directions: Def. 1⇒ Def. 2 (KL-EX.2.4)
and Def. 2⇒ Def. 1 (KL book).

• (Def. 1⇒ Def. 2) Def. 1 states that Pr[M = m|C = c] = Pr[M = m].

Consider any c ∈ C and m ∈ M, by Bayes’ theorem we have

Pr[C = c|M = m] = Pr[M = m|C = c] · Pr[C = c]/Pr[M = m] .

Therefore, Pr[EK(m)] := Pr[C = c|M = m] = Pr[C = c] =: δc

holds for any m and c. Therefore for any m, m′ ∈ M and c ∈ C,
Pr[EK(m) = c] = δc = Pr[EK(m′) = c].

Perfect indistiguishability These two equivalent formulations are
abstract mathematical expressions. Cryptographers however usually
prefer thinking operationally. They like actively playing a (mental)
game with an adversary.

Def. 2 can be read as the distributions (over C) resulting from
encrypting one message m and encrypting another message m′ are
identical. From the attackers point of view, these two distributions
are indistinguishable. We can reformulate this by a experiment or game
between an attacker/adversary A and the so-called challenger CH.
This gives another equivalent definition of PS. 6 6 This will also serve as the template for

many of our definitions in the future.

Draw a game diagram

1. Adversary A outputs a pair of messages m0, m1 ∈ M.

2. CH generates a key k ← G, and a uniform b ← {0, 1}. Com-
pute challenge ciphertext c← Ek(mb) and give to A.

3. A outputs a bit b′ as the guess of b.

4. Define the output of the experiment to be 1 if b′ = b, and 0
otherwise. Write PrivKeav

A,Π = 1 if the experiment output is 1, in
which case we call A succeeds.

Figure 1: Adversarial indistinguishabil-
ity experiment PrivKeav

A,Π.

Definition 4 ([KL: Definition 2.5]). Π = (G, E, D) is perfectly indistin-

guishable if for every attacker A, it holds that

Pr[PrivKeav
A,Π] =

1
2

. (3)

4

Lemma 5. [KL: Lemma 2.6] Perfect secrecy is equivalent to perfect indistin-
guishability. 7 7 Proof in HW.

Remark 1. why care about so many equivalent definitions? Differ-
ent characterizations give a more comprehensive understanding. In
different situations, some are easier to work with. Don’t constrain
yourself to one!

One-time Pad

We have a nice definition. But can we achieve it? A simple scheme,
One-time-pad (OTP) does it. Vernam, patented in 1917, but existed
earlier. However, the formal analysis, i.e., definition and proof of
security, had to wait for about 25 years till Claude Shannon’s seminal
work. Shannon was a mathematician, electrical engineering and
cryptographer. He was the founding person of information theory,
and he was also one of the early researcher in artificial intelligence.
We are studying his main contribution in cryptography.

[KL: Construction 2.8] Fix integer ` > 0. K =M = C = {0, 1}`.
• G: sample a uniformly random key k← K.

• E: on input m ∈ M and k ∈ K, output c := m⊕ k.

• D: on input c ∈ C and k ∈ K, output m := c⊕ k.

Figure 2: Construction of one-time-pad

8 8⊕ is XOR bit-wise. OTP is correct,
simple and actually got used quite a
lot by national intelligence angencies
in mid-20th, e.g., “red-phone link”
between the White House and Kremlin
during cold war.

Theorem 6 ([KL: Theorem 2.9]). The one-time-pad encryption scheme is
perfectly secret.

Idea. Ciphertext is a uniformly random string regardless of the
plaintext.

Proof. Use Def. 2. For any m, m′ ∈ M and c ∈ C.

Pr[EK(m) = c] = Pr
k←K

[k⊕m = c] = Pr
k←K

[k = m⊕ c] = 1/2` .

Similarly Pr[EK(m′) = c] = Prk←K[k ⊕ m′ = c] = 1/2`. Hence
Pr[EK(m) = c] = Pr[EK(m′) = c] for arbitrary m, m′ and c. This
concludes the proof.

Crucial observations on one-time-pad.

• Key has equal length as a message. |k| = |m|.

• “One-time” means “one-time”, seriously!

5

Limitations of perfect secrecy

It turns out these are not just shortcomings of a particular encryption
scheme, OTP. But actually both are inherent limitations of perfect
secrecy.

Limitation 1: Perfect secrecy cannot avoid long keys.

Theorem 7 (KL Theorem 2.10). Suppose Π = (G, E, D) is perfectly
secret, then |K| ≥ |M|.

Proof. Proof by contradiction. Suppose |K| < |calM|. Consider a
c ∈ C, and we run the decryption algorithm on c under each k ∈ K.
Let

M(c) := {m : m = Dk(c) for some k ∈ K} .

ClearlyM(c) ≤ |K| < |M|. This is already saying that given c,
adversary can rule out some messages, which must not be possible
by perfect secrecy. More precisely, consider the uniform distribution
onM, and some m∗ /∈ M(c). Then

Pr[M = m ∗ |C = c] = 0 6= Pr[M = m] =
1
|M| .

Attacking the system with prob. 1/2` may not seem too bad, but
this violation can be boosted. HW bonus problem has a strengthen of
the proof here.

Limitation 2: “one-time” only. It is inherent too, but more general (ap-
plies to computational secrecy too). It has to do with the threat/attack
model, i.e., secrecy against eavesdropping is not strong enough to en-
sure securely encrypting multiple messages under the same key.

Computational secrecy

Resolving limitation 1 To get away with long keys, have to appeal to
relaxations in perfect secrecy.

Recall the perfect indist. formulation: distinguishing prob. must
be exactly 1/2 (i.e. attacker always fails completely) against any at-
tacker (i.e. can be computationally unbounded) .

• consider “efficient” attackers only

• accept “small” break of scheme

Both are necessary.

• Known-plaintext attack: exp. time, succ prob. almost 1.

6

• Key-guessing attack: constant-time, 1/|K| success probability.

How to interpret the constraints? Two general approaches: con-
crete and asymptotic.

Concrete approach

Template for concrete security
A scheme is (t, ε)-secure if for every adversary running for time
at most t succeeds in breaking the scheme with probability at

most ε.

Example 8. No adversary running at most 280 CPU cycles can break
the scheme with prob. better that 2−60. 9 9 Modern private-key encryption often

assumes optimal security: when the
key has n bits (i.e. key space size 2n),
any adversary running for time t can
break the scheme with prob. at most
ct/2n for some constant c.

Important in practice, but difficult to provide and often mislead-
ing: what type of computing power, what algorithm was imple-
mented?.

Asymptotic approach (We will take this!) 10 10 In practice need concrete security.
Asymptotic does not guarantee se-
curity for small n, but usually can be
translated into concrete security.

Security parameter n – think of it as the key length, and every-
thing is viewed as a function of n rather than concrete numbers:
running time of all algorithms (including the adversary) and success
probability.

“Efficient” = PPT, and “Small”= negligible.

Template for asympototic security
A scheme is secure if for every probabilisitic polynomial-time
adversary A carrying out an formally specified attack, the

probability that A succeeds in the attack is negligible.

More about asymptotics

Definition 9. A probabilistic polynomial time (PPT) algorithm is an
algorithm with access to an infintely long random tape, which for
all inputs x ∈ {0, 1}∗ and random tapes halts within p(|x|) steps
for some polynomial p. A PPT algorithm A is said to compute f :
{0, 1}∗ → {0, 1}∗ with probability q if for all inputs x ∈ {0, 1}∗, we
have Pr[A(x) = f (x)] ≥ q.

A negligible function is one that decreases asymptotically faster
that any inverse polynomial function.

Definition 10. A function f : N → R is negligible if for every positive
polynomial p, there is an N such that for all integers n ≥ N it holds
that f (n) < 1

p(n) .11 11 We usually denote an arbitrary
negligible function by negl.

Example 11. 2−n, 2−
√

n, n− log n are all negligible.

Rule of thumb: n5 adversary succeeds with prob. at most 2−0.5n.

	Perfect secrecy of private-key encryption
	One-time Pad
	Computational secrecy

