
1

Winter 2018 CS 485/585 Introduction to Cryptography

Lecture 10
Portland State University Feb. 8, 2018
Lecturer: Fang Song

Draft note. Version: February 11, 2018. Email
fang.song@pdx.edu for comments and corrections.

Agenda
• (Last time) HMAC, AE, ENC-then-MAC

• CCA/AE formal definitions

• Theoretical constructions based on one-way functions

Authenticated encryption: formal definitions

What do we mean exactly by authenticated encryption? We give
a formal definition integrating a strong notion of secrecy (against
chosen-ciphertext-attacks) and a notion of unforgeability.

Defining CCA-secure encryption

AE requires a stronger notion for secrecy than CPA. We consider the
attacking model called chosen-ciphertext-attacks (CCA).

A chosen-cipher-attack has access to, in addtion to the encryption
oracle, the decryption oracle when playing the indistinguishability
game. To avoid trivializing the definition, the obvious constraint is to
refuse answering decryption query on the challenge ciphertext that the
adversary needs to guess which of the two messages it encrypted. Oth-
erwise, we put no more restrictions on how the adversary interrogates
the two oracles.

Read [KL: Sect. 3.7.1] for the formal description of the CCA indistin-
guishability game. We denote the output of the game PrivKcca

A,Π(n) = 1

iff. A wins the game, i.e., it guesses correctly the random bit chosen
by the challenger.

Definition 1 ([KL: Def. 3.33]). A private-key encryption scheme Π is
CCA-secure, if for all PPT adversaries A,

Pr[PrivKcca
A,Π(n) = 1] ≤ 1

2
+ negl(n) .

2

Do we have any CCA-secure schemes?
• PRF-OTP is not CCA-secure. 1 1 Let m0 = 0n and m1 = 1n. Receive

c = (r, s = Fk(r)⊕mb), flip first bit of
s to obtain c′. Query DEC oracle on
c′: if 10n−1 then answer 0; if 01n−1,
answer 1.

• How about Randomized counter-mode of a block cipher?

Is CCA realistic? Full decryption oracle seems unlikely. However,
even a partial decryption oracle could be disastrous. A very effective
attack called padding oracle attack breaks CBC-encryption, by exploit-
ing an oracle that just tells if a ciphertext is well-formed.

Enc-then-MAC is CCA-secure. We claimed earlier that Enc-then-
MAC with a CPA-secure encryption always gives an authenticated
encryption. In particular, the resulting scheme is a CCA-secure en-
cryption. The intuition behind it is that authenticating the ciphertext
produced by the CPA-scheme essentially makes a decryption oracle
useless. Consider a ciphertext that the adversary asks the decryption
oracle:
i. it is the ciphertext returned from a previous encryption query.

Nothing new can be learned.

ii. it is a new ciphertext. This helps the adversary for sure, however,
this implies that A has forged a pair of ciphertext and tag. Break-
ing MAC!!!

Defining authenticated encryption

CCA security will be the secrecy requirement for AE. We also need
some authentication condition, which is captured by unforgeability.

Definition 2. A private-key encryption scheme Π is unforgeable if for
all PPT adversaries A,

Pr[Enc-forgeA,Π(n) = 1] ≤ negl(n) .

1. CH generates key k ← G(1n).

2. Adversary A is given 1n and oracle access to Ek(·) (i.e., A can
make queries mi and obtain ci ← Ek(mi)). Let L := {mi} be
the set of all queries that A asked.

3. A outputs c in the end. Let m ← Dk(c). The output of the
game Mac-forgeA,Π(n) = 1 iff. (1) m ̸=⊥ and (2) m /∈ L; in this
case we say that A wins.

Figure 1: The unforgeable encryption
game Mac-forgeA,Π(n)

Definition 3. A private-key encryption scheme is an authenticated
encryption scheme if it is CCA-secure and unforgeable.

3

How about MAC with verification oracles? [KL: Exercise 4.2,4.3]
Inspired by chosen-ciphertext-attacks, you may wonder, what if a
MAC-attacker has in addition a verification oracle at hand?
• Simple observation: a MAC with canonical verification remains

secure, since verification oracle could have implemented by an ad-
versary by querying the signing oracle.

• Less obvious: there exists a secure MAC that becomes broken once
a verification oracle is available. Can you think of one?

Find on the course webpage a diagram summarizing private-key cryptography http://fangsong.info/
teaching/w18_4585_icrypto/w18_cs4585_privksum.pdf.

fixed length variable length
Insecure ENC ECB mode
Perfect secrecy OTP
Comp. Secrecy PRG-OTP* Counter mode

CPA PRF-OTP CBC mode
Randomized Counter mode

MAC (prefix-free) Basic-CBC
Cascade

MAC (fully-secure) PRF-MAC Encrypted CBC
Encrypted Cascade (NMAC)
HMAC: NMAC using hash

Authenticated ENC Enc-then-MAC Enc-then-MAC

Table 1: Private-key primitives: other
than OTP, PRG-OTP, HMAC, the
rest are all build from Block ciphers
(PRF/PRP). *: practical stream
ciphers are (dynamic) variable-length.

Theoretical constructions of Priv-key crypto

How to construct private-key cryptography based on
complexity-theoretical foundations?

We showcase some beautiful theory in the foundations of (modern)
private-key cryptography. We will see how to start from a mathemat-
ical abstraction called one-way functions, which looks quite weak and
“bland”, to build step by step the entire private-key cryptography.
Namely

Theorem 4 (Informal). One-way functions are equivalent to the
existence of all private-key cryptogrraphy.

This lecture is one of my favorite. But it might be quite abstract
and a bit advanced. For the most constructions, you just need to ap-
preciate the high-level ideas and the intelligent elegance. The idea of
computational indistiguishability and the technique of hybrid argu-
ment are nonetheless worth digesting and internalizing.

http://fangsong.info/teaching/w18_4585_icrypto/w18_cs4585_privksum.pdf
http://fangsong.info/teaching/w18_4585_icrypto/w18_cs4585_privksum.pdf

4

One-way functions

One way functions are no-doubt a indispensable (theoretical) founda-
tion of modern cryptography.

Definition 5. A function f : {0, 1}∗ → {0, 1}∗ is one-way if the two
conditions hold:
1. Easy to compute: There is a poly-time algorithm Mf computing f ,

i.e., ∀x,Mf (x) = f(x).

2. Hard to invert (image of random input): for any PPT A,

Pr[f(x′) = f(x) : x′ ← A(1n, f(x)), x← {0, 1}n] ≤ negl(n) .

If in addition f is a permutation (length-preserving and one-to-one),
then we call it a one-way permutation.

You can interpret the expression in 2nd condition as an inverting
game, and one-way means that no efficient adversary can succeed in
that game except with negligible probability.

Remark 1. The definition is easy to understand intuitively, but there
are many possible common misunderstandings:

• The hard-to-invert property is an average-case statement. It is not
merely saying that there exists some y that is difficult to invert in
the worst-case. Rather, just by picking a uniformly random x, it is
already hard to find a preimage of f(x).

• Similarly, a non-one-way function, i.e. a function that is NOT one-
way, is not necessarily easy to invert all the time. For example, a
function that is easy to invert on even inputs, but hard to invert on
odd inputs is not one-way.

• Spending enough (exponential) time, inverting is always possible.
So this only makes sense in the computational regime.

We will see more examples later. Here we give informally a candi-
date f(p, q) := p · q, where (p, q) are (encodings) of prime numbers
of certain length. Inverting f is the facterization problem, which is
believed hard (at least as classical computers are concerned. It can be
solved efficiently on a quantum computer though.)

Hard-core predicate

Suppose f is a OWF, does it mean given y := f(x) on random x, it is
difficult to learn any information about x (or some other preimage)? 2 2 Not necessarily. In fact, for any

OWF f , we can construct

g(x1, x2) := (x1, f(x2)) .

g reveals half of its input in plain,
nonetheless, you will prove in home-
work that g is still a OWF.

This motivates the notion of a hard-core predicate, hc : {0, 1}∗ →
{0, 1}. Basically hc(x) captures the one-bit information about x that is
the “hard” to figure out from f(x), and hence makes inverting f hard.

5

Definition 6. A function hc is a hard-core predicate of f if it can be
computed in poly-time, and for every PPT A,

Pr[b′ = b : b′ = A(1n, f(x)), b = hc(x), x← {0, 1}n] ≤ 1/2 + negl(n) .

Remarks about a hard-core predicate
• hc(·) is not a stand-alone ob-

ject, it is relative to a function f .
While the definition applies to any
function, we will be primarily con-
cerned with hard-core predicates of
a one-way function f .

• (a trivial example) if
f(x1 . . . xn) = x1 . . . xn−1. Then
hc(x) := xn is trivially a hard-core
predicate of f .

• (a simple idea fails) Is hc(x) :=⊕n
i=1 xi a good one? g(x) :=

(f(x) ⊕ xi) is a OWF, but it
trivially reveals hc(x).

• for f(p, q) = p · q, the least
significant bit of x = (p, q) is a
hard-core bit if factoring is indeed
hard.

The first surprising theorem in our trip, which we will not prove,
asserts that if one-way function exists, then there must also exist a
one-way function that has a hard-core predicate.

Theorem 7 ([KL: Thm.7.5] Goldreich-Levin Theorem). Assuming
one-way functions (permutations) exist, then there exists (explicit
constructions of) a one-way function (permutation) g and a hard-core
predicate hc of g.

PRGs from OWFs

Because of the unpredictability feature of a hard-core predicate, we can
naturally construct

Theorem 8 ([KL: Thm. 7.19]). Let f be a one-way permutation with
hard-core bit hc. G(s) := f(s)∥hc(s) is a PRG with expansion factor
ℓ(n) = n+ 1.

How could this construction fail if f is
not necessarily a permutation?In fact one-way functions are also sufficient to construct a pseudo-

random generator, as shown in the famous paper by HILL 3. 3 A Pseudorandom Generator from
any One-way Function. Read More:
http://epubs.siam.org/doi/abs/10.
1137/S0097539793244708.

1-bit surplus does not sound useful enough. We can increase it
by composing the basic PRG in certain ways. We will illustrate an
important notion computational indistinguishable, and a basic proof
technique hybrid argument.

PRG Composition: parallel

Given G : {0, 1}n → {0, 1}n+1, construct G′ : {0, 1}tn → {0, 1}t·(n+1)

PG(s1, . . . , st) := G(s1)∥ . . . ∥G(st) .

Theorem 9. PG is a PRG.

Parallel composition can be run efficiently on parallel proces-
sors/machines, but it does not increase the expansion factor4. 4 ℓ′(n)/|s′| = 1 + 1

n
= ℓ(n)/|s|

http://epubs.siam.org/doi/abs/10.1137/S0097539793244708
http://epubs.siam.org/doi/abs/10.1137/S0097539793244708

6

PRG Composition: sequential (Blum-Micali)

Blum-Micali proposed another strategy SG which is essentially se-
quential composition.

G1(s) = G(s)

G2(s) = G([G1(s)]1,...,n)∥[G1(s)]n+1

. . .

SG(s) := Gt(s) .

Draw Blum-Micali diagram
Let’s check its expansion factor: ℓ′(n)/|s′| = 1+ t

n > ℓ(n)/|s| = 1+ 1
n .

If we take t = poly(n) then we have

Theorem 10 ([KL: Thm. 7.20]). If there exists a PRG G with expan-
sion factor n + 1, then for any polynomial poly, there is a PRG SG

with expansion factor poly(n).

Pseudorandom functions and permutations

PRFs from PRGs

Goldreich-Goldwasser-Micali construction [KL: Construction 7.21]:
Denote G(s) = G0(s)∥G1(s) where Gb(s) ∈ {0, 1}n.

Fk(x1x2 . . . xn) := Gxn
(. . . Gx2

(Gx1
(k)) . . .) .

Imagine a binary tree with depth n. Associate each node v an n-bit
string str(v), where at the root str(root) = k we put the random key.
For each node v, compute G(str(v)) = z1∥z2, zi ∈ {0, 1}n, and then
assign left child str(Lv) = z1 and right child str(Rv) = z2.

Each leaf can be paired up with an input-string x. From left to
right l0...0, l0...1, . . . , l1...1. Then we define Fk(x) = str(lx). Note that
we don’t have to construct the tree entirely in order to compute Fk.
Instead, to compute Fk(x), just follow the path from root to the leaf
lx and invoke G at each level. This only takes n executions of G and is
efficient. Draw GGM tree. For starters: build a

function that takes 1-bit inputs, and
then 2-bit inputs, ...

PRPs from PRFs

The Feistel network we saw earlier (DES) transforms a function to a
permutation. Indeed Luby-Rackoff proved that

Theorem 11 ([KL: Thm. 7.23]). If F is a PRF, then Σ(3) is a PRP.

Four and more rounds make a strong PRP.

	Authenticated encryption: formal definitions
	Theoretical constructions of Priv-key crypto
	One-way functions
	PRGs from OWFs
	Pseudorandom functions and permutations

