
04/04 251 Lez 1

P: coding, handron

T: theory [math, pfs

250/25/ Distrete math Typical topics

220

251

others

1 Set theory

0 Losic

& Courbinatorics

1 math pfs (e.g. indution)

A Algebraic

A Number theory V linear algebra

A Graph theory.

Struzture

(aka abstract)

> probability theory

algebra

· why bother?

1 foundations

△: algorithm design.

→: ML/Data Szienze

D: Crypotography/ Communization/deep Searoning.

b	. A few motivating problems
	A few motivating problems. Faztoring Given: $N = p.9$ (P.9 prime) Tind: $p.9$ (P.9 prime) $p=3.9=11$)
	r faztoring Till (N=33)
	m=3, 9=11/
	Find: integer soln's x, y s.t.
-/	$x^2 - dy^2 = 1$
/	$x^2 - dy^2 = 1$ e.g. $d = 2$
	$x = 3, y = 2, \{(s,t): s+2!t = (3+2:2)3\}$
	SVP: Gricen: Lattice 1 (Shortest) Find: VEA V+0 Veztor Drablem St. V min.
	(Shortest) Frand: VEA V+0 Veztor S.t. V min. (柱)
	Veztor St. WI min.
acksquare	
\	All fundemental to modern cryptograph!
1	
	V. Diophantine egn's: find integer soln's to egn's.
	to egn's
	- linear = ax+by = c
	x, y unknown, a, b, c integers
	-quadratic ax2+by2=c
	70.5(0) 10 × 10 0
	$- x^{N} + 1 N - 2 N (N = 1 : x + y = 2 e^{0}y)$
	何般之遇
	$-\chi'' + y'' = Z''$ $\begin{cases} N = 1 : \chi' + y' = Z' \text{ (Pythagorean)} \\ N = 2 : \chi'' + y'' = Z'' \text{ (Pythagorean)} \end{cases}$ $\begin{cases} N > 3 : \text{ no int. soln's} \end{cases}$ $\begin{cases} T > 3 : \text{ no int. soln's} \end{cases}$
	Fermats last theorem

	- Hilbert's 10th problem.
	Is there an algorithm deziding
	ic D'acia has an sola ?
	if a Diegn has a sola?
	Halting Problem Un zomp utable Froblem's unzomputable by any computer.
	The zomp utable
	I problem's uncomputable by any comparer.
1	Algebraic Struztures.
O	what is analgebra?
	Set + operation $(\mathbb{R}, +) \rightarrow (\mathbb{R}, +, \cdot)$
	· (R, ·)
	, X : set . P(X):={ Y = X }
	20merset(厚度)
	·(ア(X), U)
	ABSTRAZE Conzrete.
	develop generic gain intuition
	proporties/techniques. sanity check
	·
	· what's common in examples above?
	3+5=8ER
	JZ·e=SeER
	SIEX, SIUSZEX i.e. SIUSZEP(X)
	\leq 7 \vee
	D: Set zlesed under the operation.

+ xyes, xopyes. DEF: An algebra: structure/system (algebra) Consists of a set A + . and operations fi, ... fx Sit. for all i, A is closed under fi lie. Vi, fi: Ax...xA >Si 4 x, ... xn: EA. fi(x, ... xni) EA (in an algebra: SiEA Vi) -usually consider binary ops = fix AXA > A Notation: (+) b. Special a gebras · Commutative algbra: & a, b ∈ A a*b = b*a · PEF: [Semigroup] (A,*) algebra is called a semi-group, if this associative $\forall \times, y, z \in A, \quad (x * y) * z = x * (y * z)$ > can define cobstant exponentiation:

> $\alpha^n := \alpha * \alpha * - \cdot \cdot \cdot * \alpha$ n timesEx. (f.,) an is ordinary exp. $(\mathbb{R}_{n},+)$ $\alpha^{n} = \alpha + \cdots + \alpha = n\alpha$

· DEF [monoid ()] Semigroup + identy (单位元) 7 eEA, St. xeA, xxe = exx = x $\frac{29}{100}$ (R, +) : e = 0 $(\mathbb{R},\cdot): e=1$ $(P(S), V): e = \phi_{\underline{}}$ · 7hm: 2f (S,*) is a semigroup. & Sis finite set. then (S, *) has an element b W/ bk=b + k>,1. et. Hats, consider. B/c |S| is finite, must repeat [Piseon hole Principle (ay ai = a) (icj) 台港原理

Iny $\alpha^i = \alpha^j$ (i/j)

Let $l = \hat{s} - \hat{r}$ $\alpha^j = \alpha^i + \alpha^i = \alpha^i$ 497i, $\alpha^{2} = \alpha^i + \alpha^{2-i}$ $= (\alpha^i + \alpha^i) + \alpha^{2-i} = \alpha^i + \alpha^i$

c. Subalgebra

SEA, if (S,*) is an algebra.

Shen call it a subalgebra of (A,*).

S closed under * x,y \in S, x \times y \in S.

Ex: (Z,+) is subalgebra (R,+)