
Fang Song
Portland State University

Cache Cont’d

Slides adapted from
CS205@PSU(Prof. Li) / CS15-213 @CMU

CS 201 System Programming and Architecture

Recall: Cache Org. and Read

2

1. Locate set
2. Check if any line in set has

matching tag
3. Yes + line valid: hit
4. Locate data starting at offset

Understanding Cache Parameters

3

Question: What different values of S, E, B imply?

๏ E = 1 (Direct mapped caches) “assigned seating”
๏ S = 1 (Fully associative caches) “open seating”

• Cache has a single set; a memory address can map to any cache line.
๏ General cases are called Set associative caches. “assigned coach”

• A memory address can map to any cache line within a fixed set.

Direct Mapped Cache (E=1)

4

Example: Cache block size 8 bytes

๏ Each memory address maps to a single cache line.

• Advantage: Simplest to implement

Direct Mapped Cache (E=1, B=8)

5

Example: Cache block size 8 bytes

๏ Each memory address maps to a single cache line.

• Advantage: Simplest to implement

No match? Then old line is evicted and replaced

Direct Mapped Cache: Exercise 1

6

0000 0x00
0001 0x11
0010 0x22
0011 0x33
0100 0x44
0101 0x55
0110 0x66
0111 0x77
1000 0x88
1001 0x99
1010 0xAA
1011 0xBB
1100 0xCC
1101 0xDD
1110 0xEE
1111 0xFF

Cache

m = 4 bits of address = 16 bytes of memory

S = 4 sets

E = 1 line per set

B = 1 byte per line/block

Index Tag Data
00
01
10
11

(S,E,B) = (4,1,1)

s= log S = 2 Index is 2 LSB of address

b= log B = 0

t=4 - (s+b) = 2 Tag is 2 MSB of address

o

Direct Mapped Cache: Exercise 1

7

0000 0x00
0001 0x11
0010 0x22
0011 0x33
0100 0x44
0101 0x55
0110 0x66
0111 0x77
1000 0x88
1001 0x99
1010 0xAA
1011 0xBB
1100 0xCC
1101 0xDD
1110 0xEE
1111 0xFF

Cache

m = 4 bits of address = 16 bytes of memory

S = 4 sets

E = 1 line per set

B = 1 byte per line/block

Index Tag Data
00
01
10
11

(S,E,B) = (4,1,1)

s= log S = 2 Index is 2 LSB of address

b= log B = 0

t=4 - (s+b) = 2 Tag is 2 MSB of address

Direct Mapped Cache: Exercise 1

8

0000 0x00
0001 0x11
0010 0x22
0011 0x33
0100 0x44
0101 0x55
0110 0x66
0111 0x77
1000 0x88
1001 0x99
1010 0xAA
1011 0xBB
1100 0xCC
1101 0xDD
1110 0xEE
1111 0xFF

Cache

Access pattern
0000
0011
1000
0011
1000

Index Tag Data
(S,E,B) = (4,1,1)

00
01
10
11

00000 0 0 88

00 0 33

mini rate

I too min

Direct Mapped Cache: Exercise 2

9

0000 0x00
0001 0x11
0010 0x22
0011 0x33
0100 0x44
0101 0x55
0110 0x66
0111 0x77
1000 0x88
1001 0x99
1010 0xAA
1011 0xBB
1100 0xCC
1101 0xDD
1110 0xEE
1111 0xFF

Cache
Index Tag Data1 Data0

0

1

(S,E,B) = (2,1,2)

b =

s =

t = 4 - (s+b) =

Direct Mapped Cache: Exercise 2

10

0000 0x00
0001 0x11
0010 0x22
0011 0x33
0100 0x44
0101 0x55
0110 0x66
0111 0x77
1000 0x88
1001 0x99
1010 0xAA
1011 0xBB
1100 0xCC
1101 0xDD
1110 0xEE
1111 0xFF

Cache
Index Tag Data1 Data0

0

1

(S,E,B) = (2,1,2)

b = 1

s = 1

t = 4 - (s+b) = 2

Direct Mapped Cache: Exercise 2

11

0000 0x00
0001 0x11
0010 0x22
0011 0x33
0100 0x44
0101 0x55
0110 0x66
0111 0x77
1000 0x88
1001 0x99
1010 0xAA
1011 0xBB
1100 0xCC
1101 0xDD
1110 0xEE
1111 0xFF

Cache
Index Tag Data1 Data0

(S,E,B) = (2,1,2)

Access pattern
0000
0001
0010
0011
0100
0101

0

1

16
0 5 1

000X000XII

1445500oxx202331E.EEco ibenititotlez lity

hit

Direct-Mapped Cache Simulation

12

v Tag Block

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 Blocks/set

Set 0
Set 1
Set 2
Set 3

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

O
OF men

1 0 MTO 1

Practice Problem

13

Consider the following code that runs on a system with a cache of the form
(S,E,B,m) = (512,1,32,32)

int array[4096];
for (i=0; i<4096; i++)
 sum += array[i];

Assuming sequential allocation of the integer array.
What is the maximum number of integers from the array that are stored in
the cache at any point in time?

7

B 32 8 int I 4Rybte integer

int in Zad 8 int block Bleaksee 2set446

Today

14

๏ Case study: direct mapped cache

๏ Case study: set associative cache

๏ Case study: fully associative cache

๏ More discussions on Cache

Recall: Cache Parameters

15

Question: What different values of S, E, B imply?

๏ E = 1 (Direct mapped caches) “assigned seating”
๏ S = 1 (Fully associative caches) “open seating”

• Cache has a single set; a memory address can map to any cache line.
๏ General cases are called Set associative caches. “assigned coach”

• A memory address can map to any cache line within a fixed set.

Set Associative Caches

16

๏ Each memory address is assigned to a particular set in the cache, but not to a
specific block in the set.

• Advantage: Reduce conflict misses
๏ Each set can store multiple distinct blocks/lines

• If each set has E blocks, the cache is called an E-way associative cache
• Set sizes range from 1 (direct-mapped) to whole cache (fully associative)

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each

eatmap

E-Way Set Associative Cache (E=2)

17

E = 2: Two lines per set
Cache block size 8 bytes B

E-Way Set Associative Cache (E=2)

18

E = 2: Two lines per set
Cache block size 8 bytes

E-Way Set Associative Cache (E=2)

19

E = 2: Two lines per set
Cache block size 8 bytes

E-Way Set Associative Cache (E=2)

20

E = 2: Two lines per set
Cache block size 8 bytes

E-Way Set Associative Cache (E=2)

21

E = 2: Two lines per set
Cache block size 8 bytes

0

E-Way Set Associative Cache (E=2)

22

E = 2: Two lines per set
Cache block size 8 bytes

No match? One line in set is selected for eviction and replacement
Replacement policies: random, least recently used (LRU), …

2-Way Set Associative Cache Simulation

23

v Tag Block

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 Blocks/set

Set 0

Address trace (reads, one byte per read):
 0 [00002],
 1 [00012],
 7 [01112],
 8 [10002],
 0 [00002]

Set 1

m 4

C

7 01 M 674

Practice Problem 2

24

Consider a 2-way set associative cache (S,E,B,m) = (8,2,4,13)
๏ Excluding the overhead of the tags and valid bits, what is the capacity of this

cache?
C SXEXB 8 2 4 64

Practice Problem 2

25

Consider a 2-way set associative cache (S,E,B,m) = (8,2,4,13)
๏ Excluding the overhead of the tags and valid bits, what is the capacity of this

cache?
๏ Draw a figure of this cache

64

Practice Problem 2

26

Consider a 2-way set associative cache (S,E,B,m) = (8,2,4,13)
๏ Excluding the overhead of the tags and valid bits, what is the capacity of this

cache?
๏ Draw a figure of this cache

Practice Problem 2

27

Consider a 2-way set associative cache (S,E,B,m) = (8,2,4,13)
๏ Excluding the overhead of the tags and valid bits, what is the capacity of this

cache?
๏ Draw a figure of this cache

๏ Draw a diagram that shows the parts of the address that are used to determine
the cache tag, cache set index, and cache block offset

FEII.IE
x D
8

Practice Problem 2

28

Consider a 2-way set associative cache (S,E,B,m) = (8,2,4,13)
๏ Excluding the overhead of the tags and valid bits, what is the capacity of this

cache?
๏ Draw a figure of this cache

๏ Draw a diagram that shows the parts of the address that are used to determine
the cache tag, cache set index, and cache block offset

o

Practice Problem 3

29

Consider a 2-way set associative cache (S,E,B,m) = (8,2,4,13)
Note: Invalid cache lines are left blankConsider an access to 0x0E34.

• What is the block offset of this address?

• What is the set index of this address?

• What is the cache tag of this address?

• Does this access hit or miss in the cache?

• What value is returned if it is a hit?

Ffb

1 0

Today

30

๏ Case study: direct mapped cache

๏ Case study: set associative cache

๏ Case study: fully associative cache

๏ More discussions on Cache

Fully Associative Cache (S=1)

31

๏ A fully associative cache permits data to be stored in any cache block, instead
of forcing each memory address into one particular block.

• There is only 1 set (i.e. S=1 and s=0) C = E * B

๏ When data is fetched from memory, it can be placed in any unused block of the
cache.

๏ Eliminates conflict misses between two or more memory addresses which map
to a single cache block.

Fully Associative Cache: Example

32

Consider the following fully associative cache: (S,E,B,m) = (1,4,1,4)
๏ Derive values for number of address bits used for the tag (t), the index (s) and the

block offset (b)

๏ Draw a diagram of which bits of the address are used for the tag, the set index and
the block offset

๏ Draw a diagram of the cache

É

sets 744,1 utter data w tag dataultag detail

Fully Associative Cache: Example

33

Consider the following fully associative cache: (S,E,B,m) = (1,4,1,4)
๏ Derive values for number of address bits used for the tag (t), the index (s) and the

block offset (b)

๏ Draw a diagram of which bits of the address are used for the tag, the set index and
the block offset

๏ Draw a diagram of the cache

s = 0
b = 0
t=4

Fully Associative Cache: Example

34

Cache

Access pattern
0000
0110
0001
0110
0010
0110

…

Tag Data

(S,E,B,m) = (1,4,1,4)
Tag Data Tag Data Tag Data

0 00 0110 0 00 000 0 11

min

miss rates

Fully Associative Cache: Example

35

Cache

Access pattern
0000
0110
0001
0110
0010
0110

…

Tag Data

(S,E,B,m) = (1,4,1,4)
Tag Data Tag Data Tag Data

Data Miss rate after first two cold misses = 0 %

The Price of Full Associativity

36

:(A fully associative cache is expensive to implement.
๏ No index field in the address anymore
๏ Entire address used as the tag, increasing the total cache size.
๏ Data could be anywhere in the cache, so we must check the tag of every cache

block. That’s a lot of comparators!

o

Today

37

๏ Case study: direct mapped cache

๏ Case study: set associative cache

๏ Case study: fully associative cache

๏ More discussions on Cache

Cache Line Replacement

38

Replacement Algorithms
๏ Most common: Least Recently Used (LRU)

• If a block hasn’t been used in a while, it’s less likely needed again anytime soon.
๏ First in first out (FIFO): Replace block that has been in cache longest
๏ Least frequently used: Replace block which has had fewest hits
๏ Random

Any empty block in the correct set may be used for storing data. If there are no empty
blocks, the cache will attempt to replace one.

arbitrary

Data Writes in Memory Hierarchy

39

Question: What happens when data is written to memory through cache?
Answer: Cache needs write policies as well.

• Write-hit: Block being written is in cache

• Write-miss: Block being written is NOT in cache

On a computer system, multiple copies of data exist, e.g. L1, L2, main, and disk.

Write-Hit Policies

40

๏ Write-through

• Writes go immediately to main memory (as well as cache)
• Can incur lots of traffic, slows down writes

๏ Write-back

• Writes initially made in cache only
• Defer write to memory until replacement of line
• Need a dirty bit (line different from memory or not)
• Can cause inconsistency among caches

Write-Miss Policies

41

๏ Write-allocate

• When write to address misses, load into cache
• Update line in cache
• Good if more writes to the location follow

๏ No-write-allocate

• When write to address misses, write straight to memory. Do not load into cache!
• Good if there are no subsequent reads and writes to address

Typically

• Write-through + No-write-allocate
• Write-back + Write-allocate

Cache Design Summary

42

๏ Cache size
๏ Associativity
๏ Block size
๏ Replacement algorithms
๏ Write policies
๏ Number of caches

