Heap property: for every object x key of $x \leq 13$ keys of children.

a. is it a valid heap?
b. Insert (3) Bubble up! Time: O(logn)
c. Extrait-min Bubble down swap w) smaller child Time: $O\left(\log _{n}\right)$
If your app.: requires fast min fax on a_{n} evolving set of obj. Heap is usually the choice of D.S.
d. Given Heap w / n obj's. which can be solved in O(I) insert \& Extrayt-min?
Va. Find obj w/ $5^{\text {th }}$ smallest key.
x b. obj. max key
$\times\left(, o b j\right.$. medicen key $\frac{u}{2}=\theta(n)$
d none of the above

1. Ha, h table.
a. app: 2-suan.

Irput: unsorted array A of n integers. \& target sum t.
Goal:
Determine $\exists ? x, y \in A$

$$
\text { Sit. } x+y=t
$$

E- cheek all pairs $(x, y) x+y \stackrel{?}{=} t$.

$$
\rightarrow \quad\binom{n}{2}=0\left(n^{2}\right)
$$

Θ (1) sort A $\theta(n \log n)$
(2) for each $x \in A$ Sort
look for $(t-x) \in A(n \cdot \log n)$ binary search

$$
\Rightarrow \theta(n \log n)
$$

(1) insert n elem's of A (n) into Hash table
(2) for each $x \in A$
look $t-x \in H$

$$
\Rightarrow O(n)
$$

! Aloft more apps'.
b. Implementations.

- Setup:- U : Universe (Big!)

- maintain evolving set

$$
S \subseteq U
$$

(es. C5 students)

- Implement as an array

TI
$\uparrow \uparrow$
id.
(2) constant lookup.
insert/ del.
(-) spaze-zostly $\sim 10^{10} \theta(|U|)$

- Implement as linked list.

$$
s,|s|
$$

lookup: $\theta(|s|)$
space: $\theta(|s|)$
\# solution: (H.T: buckets hash funz.)

1) pick $n=$ \# of "buckets"
2) choose a hash function [assign every
 $h: U \rightarrow\{0, \cdots: n-1\}$ a bucket

(12) look up: O(1)
(v) Spare: $\theta_{r_{1}(n) \quad n=\theta(|s|)}^{\theta(|s|)}$

1 Devils come w/ the pigeons
c. Collisions:

$$
\text { distinat } x, y \in U \text { sat. } h(x)=h(y)
$$

Two sola's: $\left\{\begin{array}{l}\text { - chaining } \\ \text { - open addressing }\end{array}\right.$

- Chaining

$$
\text { egg. } h(5)=h(13)=1
$$

-keep linked list in each burket.

- given a key k : ins/del/(ookup
$A[h(k)]$ in the list.
- open addressing

Idea: try multiple buzleet until available assoziate each $k w / a$ probe sequence
How to choose prove sequence?

- Linear probing. $h(k) \rightarrow h(k)+1 \rightarrow h(k)+2$

- Double hashing.
- $h_{1}(k)$ starting point
- $h_{2}(k)$ offset

$$
\begin{aligned}
& h_{1}(k)=17 \\
& h_{2}(k)=23
\end{aligned}
$$

Take - away:

- Regardless of resolving strategy:
H.T. performance downgrades w/ collisions
- choice of lush function matters!
e.g. $h(x)=0 \quad \forall x$ Terrible!

Ex: A hash table length $n \geqslant 1$

- Hash function: $h: x \mapsto 0 \quad \forall x \in U$.
- set S inserted in hash table $|S| \leq n$.

What's the typical running time of subsequent Lookup op's?

	chaining \& open addressing . (linear)	
A.	$\theta(1)$	$\theta(1)$
B.	$\theta(1)$	$\theta(\|s\|)$
C.	$\theta(\|s\|)$	$\theta(1)$
D.	$\theta(\|s\|)$	$\theta(\|s\|)$.

$\sqrt{1}$ What is a "good" hash function?
Random $h: U \rightarrow[n]$.
for $k \leftarrow U, h(k)$ Chosen
indef and uniformly at random from $\{0, \ldots n-1\}$.

