
 

04 71 163 Lez2

0 Warm up exercises
or T in Etf

h

ff.ge siblingsof e f g

ob is is a fee ofT

biog

b Deptha anode dep
r o

depiv ofedges
deped 2 from rtov

depth1 3

Heightof a tree may depsu
Height T depth 3

c consider a binarytree of height K
how many leavesdoes it have
at least I at most

4 3 9 6
6167 Fy

6866 68 complete



Full binary tree everynode has 0022
2 27 children
us

completebinarytree completelyfilled
except for last levelÉE 7774 all nodes in last level
are as far left as possible

6
Full Notomplete

complete NOTFall

T Height k binary tree howmany leaves

I It leaves 2



7 BST BinarySearchTree Cont'd

sorted array fast log ins del

OP's sorted Array Bff
Balanced

Search login
select 1 legn
minimax 1 logn price

Rank logh logn
output
insertedorder

n n

Tus n logn
del n logn 3gain

BST structure

Search Tree property

Anarbitrary node w key

I All

leftsubtree right subtree
EI which ones are valid BSTs

I

1006
a b



Height matters
Search 2 in 107 d

Ex Binary treet w R nodes

In Height T

b Supported op's

Search key I int
start at root
traverse left rightchild L

k Trentkey Is G Tagony

Nullreturn node
w key K OR NULL

Inscs
Time height
Insert a new key K inTTeach for K fail
rewire final NULL pointer to new node

Time height
min max
compute min max key in T
start at root
follow Icd pointerfor min rightfmax



until cannot anymore
return last key found
Time T w n nodes

1 logan n height
output in order
recurse TL

output riskey
reaure on TR

All smaller All largekeys
keys

Time Dcn
0cm

Delete
delete a key k from a search tree

4 2

easy case K's node has
no children

Q Teletelt
mediumcase K's nodehas 1 child
unique child assumes position
previously held by k's node



difficultcase K'snode has 2 children
del

1
21 reduce to easycases above

pred
Find k's predecessor i

swap KIT
Deletelk becomes one of

the 2 easy cases above

Time Search And Predecessor

Px predecessor of key k
Pred 3

Preda pred 4

excuse K's leftsubtree
non empty

returnmarkey in leftsubtree
O W follow parent pts until

youget to a key less than
k

tracing upward 1ˢᵗ left turn

Time O height



Rank k nodes w key 2k

241 Augment BST at every node x
sized of nodes in subtree

rooted at singeing
size 7 5

start at root2,6 2
if k current key
increment rank bysized
move to rightchild
aw move to left child

Time height

c Balanced Search Tree
Goal ensure that height is

always logn Bestpossible
mult soln's exist Reb Black tree

AVL tree

B tree
details are tricky
You dont need to codeup fromscratch

Idea Rotation
locally rebalance subtrees at a node
in e time



Left rotation

2 89

tne syn

97
right rotation


