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1 The tensor product

Recall that we may represent bits as probability vectors. For example, suppose we have u, v and:

u =

[
3/4
1/4

]
(1)

v =

[
1/3
2/3

]
(2)

Then the tensor product of u and v, denoted u⊗ v, is the vector:

u⊗ v =


1/4
1/2

1/12
1/6

 (3)

(4)

The tensor product is used to represent the joint probability of multiple bits in a single vector.
Each row simply corresponds to the probability of that bit combination: for example the probability
that u is 1, and v is 0, is the element (u⊗ v)10, which is 1/12.

1.1 Computing the Tensor Product

Suppose we have an m× n matrix A, and a k× l matrix B. So:

A =

 a11 . . . a1n
...

. . .
...

am1 . . . amn

 (5)

B =

b11 . . . b1k
...

. . .
...

bl1 . . . blk

 (6)

(7)
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The tensor product is computed by multiplying each element of A with the entire matrix B,
and tiling the the result. So:

A⊗ B =

 a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 (8)

(9)

Thus, the dimension of A⊗ B is mk× nl.
So, for example, the tensor product of u and v, used above, is calculated as follows:

u⊗ v =

3/4
[

1/3
2/3

]
1/4

[
1/3
2/3

]
 (10)

=


1/4
1/2
1/12
1/6

 (11)

1.2 Properties of the Tensor Product

A few tensor product properties:

1. Distributive: A⊗ (B + C) = A⊗ B + A⊗ C

2. You can move a scalar around: (αA)⊗ B = A⊗ (αB) = α(A⊕ B)

3. Preserves unitary-ness: if u and v are unitary, u⊗ v is unitary.

4. NOT commutative!! It is not always true that A⊗ B = B⊗ A.

Another interesting property is that there are some vectors that cannot be written as a tensor
product. For example, for the following vector x:

x =


1/2

0
0

1/2

 (12)

There is no pair of vectors u and v such that u⊗ v = x. In this case, we say that u and v
are correlated. Only uncorrelated systems may be written as a tensor product. This will be an
important property later.
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1.3 Tensor produces with qubits

We can use similarly use tensor products to describe associated probabilities on qubits. Suppose X
and Y are qubits such that:

X : |φ〉 = α |0〉+ β |1〉 =
[

α
β

]
(13)

Y : |ψ〉 = γ |0〉+ δ |1〉 =
[

γ
δ

]
(14)

Note: this is using Dirac notation, covered in Lecture 1 – or p. 10 of the Watrous notes (link on
main course page).

So, what is the state of the joint system? We can compute the tensor product to find out:

X : |φ〉 ⊗ |ψ〉 =
[

α
β

]
⊗
[

γ
δ

]
=


αγ
αδ
βγ
βδ

 (15)

(16)

This can equivalently be written as:

|φ〉 ⊗ |ψ〉 = (α |0〉+ β |1〉)⊗ (γ |0〉+ δ |1〉) (17)
= αγ(|0〉 ⊗ |0〉) + αδ(|0〉 ⊗ |1〉) + βγ(|1〉 ⊗ |0〉) + βδ(|1〉 ⊗ |1〉)

(18)

2 Multiple Qubits and Dirac Notation

Above, we ended up with the long expression, αγ(|0〉 ⊗ |0〉) + αδ(|0〉 ⊗ |1〉) + βγ(|1〉 ⊗ |0〉) +
βδ(|1〉 ⊗ |1〉). Why write it this way? As it turns out, vectors like |0〉 ⊗ |1〉 form an orthonormal
basis. There is a special notation for these vectors – for example, |00〉 = |0〉 ⊗ |0〉. We can also
denote the tensor product of any two states φ and ψ as follows: φ⊗ ψ = |φ〉 |ψ〉.
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So, our four basic states that can result from |0〉 and |1〉 (and thus the orthonormal basis for
2-bit systems) are:

|00〉 =


1
0
0
0

 (19)

|01〉 =


0
1
0
0

 (20)

|10〉 =


0
0
1
0

 (21)

|11〉 =


0
0
0
1

 (22)

These allow us to write certain superpositions more compactly using Dirac notation. For
example:

1√
2
(|00〉+ |11〉) =


1√
2

0
0
1√
2

 (23)

Note that the superposition above is one of the special vectors which cannot be written as a
tensor product. A superposition which cannot be written as a tensor product is called entangled.
A superposition that can be written as a tensor product is called a product state. Entangled
superpositions will be important in the future. An pair of entangled qubits is also called an EPR
pair.

As mentioned above, |00〉, |01〉, |10〉, and |11〉 form an orthonormal basis for C4. More bits
would mean an orthonormal basis for a higher-dimensional space. For example, suppose we have
n qubits. Then:

{|0...0〉 ... |1...1〉} (24)

Is the basis for (C2)n, with dimensions 2n.
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3 Circuit Models

3.1 Classical Circuit Models

Circuit models represent computation as a network of logical gates. This model is equivalent in
power to a Turing machine.

Some basic gates are and, or, and not:

And:

∧

Or:

∨

Not:
¬

These make a very powerful combination. A circuit with s gates maybe converted to a Turing
machine that runs in O(s log s) time. Similarly, a Turing machine that that runs in time t can
be converted to a circuit with O(t log t) gates. One thing which classical circuits often lack is
randomness. Therefore, we also introduce the ’coin flip’ gate, which randomly outputs 0 or 1:

Coin flip:
$

We can use this to make a more interesting circuit:

$ • x

1 ∧ y

This circuit outputs either 11 or 00, each with probability 1/2.

3.2 Quantum Circuits

Quantum gates are different from classical circuit gates. Instead, they correspond to the unitary
Pauli operators:

The X operator:

X =

[
0 1
1 0

]
(25)

X

The Y operator:
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Y =

[
0 −i
i 0

]
(26)

Y

The Z operator:

Z =

[
1 0
0 −1

]
(27)

Z

The Identity operator:

I

Finally, the Hadamard Operator:

Z =

[
1√
2

1√
2

1√
2

−1√
2

]
(28)

We can also create 2-qubit gates by taking two 1-qubit gates and applying the tensor product
to their matrices. Not that, as per the rules of the tensor product, this will yield a 4x4 matrix.

3.3 More Interesting Gates

A more interesting gate is the ’controlled not’ gate, or CNOT. It has the following matrix:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (29)

CNOT takes as input a ’control’ qubit and a ’target’ qubit. The control qubit will pass through
unchanged, but the target will be xored with the control. So, if the control is a and the target is b,
CNOT will output a and a⊕ b. CNOT has a special circuit diagram, shown below:

a • a

b a⊕ b
For the basic 2-bit states, the output of CNOT looks like this:

CNOT |00〉 = |00〉 (30)
CNOT |01〉 = |01〉 (31)
CNOT |10〉 = |11〉 (32)
CNOT |11〉 = |10〉 (33)
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Note that, if the first bit is 1, the second bit is flipped – as one would expect for an xor-like
operation.

Another complex gate is the Tofolli gate. This takes 3 input qubits, a, b, and c, and changes c
to c⊕ (a ∧ b). You can look up the matrix, but the Toffoli gate circuit looks like this:

a • a
b • b
c c⊕ (a ∧ b)

A final unique gate type is the Measure gate. This represents actually measuring the qubit,
collapsing it to a classical value. It’s represented by a meter symbol:

3.4 An Example Quantum Circuit

|0〉 H •

|0〉

The possible outputs of this circuit are 00 and 11, each with probability 1/2. Note that, just
before measurement, the state of the qubits is 1√

2
(|00〉 + |11〉) – the entangled state that was

mentioned in equation (21). So, this circuit makes use of an EPR pair!

3.5 Partial measurement

Suppose we have the following quantum circuit:

|0〉
QCKT

|0〉
Here, QCKT is some arbitrary quantum circuit. Suppose we want to know the state of the

qubits just before the measurement is taken, which will will call |φ〉. Then we could write this as:

|φ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉 (34)

So, the probability of seeing a 0 in the first bit is:

|α00|2 + |α01|2 (35)

And the probability of seeing 1 in the first bit is:

|α10|2 + |α11|2 (36)
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However, this is BEFORE measurement. After measurement, the probability on the other bit
will change – measuring the first bit gives you additional information about the second. Suppose
you measure 0 for bit 1. Then bit 1’s state is now:

α00 |0〉+ α01 |1〉√
|α00|2 + |α01|2

(37)

And, if 1 is measured for bit 1, bit 2’s state is:

α10 |0〉+ α11 |1〉√
|α10|2 + |α11|2

(38)

Note that we must divide by the square root term to normalize the probabilities, so they still
add up to one. A final note – the order in which measurements are performed does NOT affect
the output probabilities. You may measure in any order and still get the same result.
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