What are we talking about when we talk about \textbf{post-quantum} cryptography?
A personal view on post-quantum cryptography & a bite on quantum algorithms
How does cryptography change in a quantum world?
Triumph of modern cryptography

Public-key cryptography
- Digital signature: DSA, …
- Public-key encryption: RSA, …
- Diffie-Hellmann key exchange

Symmetric-key cryptography
- Block ciphers: AES
- Cryptographic hash function: SHA-2, …

Cryptographic protocols
- Secure two/multi-party computation
 - e-voting, …

Cryptography: a pillar of security for individuals, organizations and society!
Modern cryptography as a science

A formal framework: **provable security**

2012 ACM A.M. Turing Award
“… created mathematical structures that turned cryptography from an **art** into a **science**.”

- Security Model
- Security Analysis (Proof)
 - Breaking Σ is as hard as solving Π
- Computational assumption
 - EX. Factoring & Discrete Log hard to solve

Crypto scheme Σ

Hard problem Π
Into a quantum world: the dark cat rises

Physicists: quantum weirdness

- Quantum superposition
 \[\frac{1}{\sqrt{2}} (|\text{ALIVE}\rangle + |\text{DEAD}\rangle) \]

- Quantum Entanglement

 - Non-classical correlation
 “Spooky action at a distance”
 \[\text{– A. Einstein} \]

Computer scientists

- Qubit
 \(\alpha |0\rangle + \beta |1\rangle \)

- Quantum gates & circuits
How does cryptography change in a quantum world?
Quantum attacks 1: break classical foundation

Public-key crypto (DSA, RSA, DH, …) \(\times\) Broken!

- Computational assumption
 - Factoring & Discrete Log hard to solve

Quantum computer can solve them\(^a\), fast! \(^a[Shor94]\)

Need: alternative problems to build crypto on
 - Exciting progress: lattice-based, code-based, …

Question: are the new problems hard for classical & quantum computers? Is this all we need to worry about?
Quantum attacks 2: invalidate classical framework

- Security Model
- Security Analysis
- Computational assumption: hard for quantum computer

Alert: unique quantum attacks
∃ information-theoretically secure protocol
Broken\(^b\) by quantum entanglement!
(vers. shared randomness)\(^b [\text{CSST11}]\)

Need: quantum provable-security framework
Re-examine EVERY link against quantum attackers

⚠️ Largely missing in PQC research…
Any quantum ingredient could be a threat

Task
- Run quantum factoring algorithm (to break public key crypto)

Need
- Full-scale fault-tolerant QC

Availability

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault-tolerant quantum computation</td>
<td>2017?</td>
</tr>
<tr>
<td>Algorithms on multiple logical qubits</td>
<td></td>
</tr>
<tr>
<td>Operations on single logical qubits</td>
<td></td>
</tr>
<tr>
<td>Logical memory with longer lifetime than physical qubits</td>
<td>2013</td>
</tr>
<tr>
<td>QND measurements for error correction and control</td>
<td></td>
</tr>
<tr>
<td>Algorithms on multiple physical qubits</td>
<td></td>
</tr>
<tr>
<td>Operations on single physical qubits</td>
<td></td>
</tr>
</tbody>
</table>

Available now
- How to Build Your Own Quantum Entanglement Experiment, Part 1 (of 2)

II
- Quantum attack classical crypto
- Ex. Quantum entanglement

Post-Quantum Cryptography

- Hard problems broken
- Security framework fail
- Construct on new problems
- Analyze Security against quantum adv

Quantum Cryptography

- Outperform classical protocols
 - Ex. Quantum key distribution
- Crypto tools for quantum tasks
 - Ex. Encrypt quantum data

NB. Many already available (even as commercial products)
This Talk

1 Quantum algorithms
 • A recent breakthrough: quantum algorithm for high-degree number fields
 Application: break some lattice crypto!
 • The Hidden Subgroup Problem & Quantum Fourier Sampling

2 Examples: classical security framework inadequate
 • Quantum Rewinding
 • Quantum random oracle model
 • Quantum attack on symmetric crypto
Which problems admit faster quantum algorithms than classical algorithms?

∃ Poly-time quantum algorithms for:

- Factoring and discrete logarithm [Shor’94]
- Basic problems in algebraic number theory
 - Unit group
 - Principal ideal problem
 - Class group
 - Constant degree number fields [Hallgren’02’05,SV05]
 - Arbitrary degree
 - [EHKS’STOC14]
 - [BS’SODA16]

Best known classical algorithms need (at least) sub-exponential time
Our quantum algorithms for Unit group, Principal ideal problem

Break several lattice-based cryptosystems believed quantum safe before
Breaking some lattice crypto

- For efficiency, often use problems in lattices with more structures

- Short-PIP
- Ring-LWE
- ...

Bad news: Short-PIP based cryptosystems are broken!

Find a short generator of a principal ideal lattice

FHEc, Multilinear mappingd, PKE by GCHQe...

\textbf{broken}

\textbf{Our quantum alg's find A generator}

\textbf{Find A generator of a principal ideal lattice}

Classical procedure: reduce size of generator in cyclotomic fieldse,f

cSmartV10
dGargGH13
eCampellGS15
fCramerDPR15
How do quantum computers solve these problems?
The Hidden Subgroup Problem (HSP) framework

INPUT
Problem Π

Reduction

HSP on a group G

Quantum Algorithm

OUTPUT
Solution to Π

Captures most quantum exponential speedup

- **Standard Def.: HSP on finite group** G

 Given: oracle function $f: G \rightarrow S$, s.t. $\exists H \leq G$,

 1. **(Periodic on H)** $x - y \in H \Rightarrow f(x) = f(y)$

 2. **(Injective on G/H)** $x - y \notin H \Rightarrow f(x) \neq f(y)$

Goal: Find (hidden subgroup) H.

- Continuous G (e.g. \mathbb{R}^n) tricky, but we can handle [EHKS14]
Interesting HSP instances

<table>
<thead>
<tr>
<th>Computational Problems</th>
<th>HSP on G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factoring</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>Discrete logarithm</td>
<td>$\mathbb{Z}_N \times \mathbb{Z}_N$</td>
</tr>
<tr>
<td>Number fields (PIP etc.)</td>
<td>$\mathbb{R}^{O(n)}$</td>
</tr>
<tr>
<td>Simon’s problem (Crypto app later)</td>
<td>\mathbb{Z}_2^n</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph isomorphism</td>
<td>Symmetric group</td>
</tr>
<tr>
<td>Unique shortest vector</td>
<td>Dihedral group</td>
</tr>
</tbody>
</table>

Abelian groups

∃ efficient quantum algs

Non-abelian

Open question:

? efficient quantum algs
Solving HSP: quantum Fourier sampling

Given: oracle $f: G \to S$ periodic on H & …

Goal: find H

Real Domain

- $G = \mathbb{Z}_N$
 - $G = \{0, r, 2r, \ldots, N-1\}$

- $G = \mathbb{Z}$
 - $G = \{\ldots, -r, 0, r, \ldots\}$

- $G = \mathbb{R}$
 - $G = (-r, 0, r, \ldots)$

Fourier Spectrum

- $\mathcal{F}_{\mathbb{Z}_N}$
 - $\mathcal{F}_{\mathbb{Z}_N} = \{0, N/r, 2N/r, \ldots\}$

- $\mathcal{F}_{\mathbb{Z}}$
 - $\mathcal{F}_{\mathbb{Z}} = \{\ldots, -1/r, 0, 1/r, \ldots\}$

Standard method for finite G

1. Quantum Fourier Sampling:
 - Quantum Fourier transform & measure

2. Recover H from samples

Old method for $\mathbb{R}_{\text{constant}}$

- Discretize & Truncate
- Reduce to finite G

Our method for continuous \mathbb{R}^m

- Informal: try to approx. sample the ideal Fourier spectrum directly!

Noise becomes intolerable as dimension grows!
This Talk

1 Quantum algorithms
 • A recent breakthrough: quantum algorithm for high-degree number fields
 Application: break some lattice crypto!
 • The Hidden Subgroup Problem & Quantum Fourier Sampling

2 Examples: classical security framework inadequate
 • Quantum Rewinding
 • Quantum random oracle model
 • Quantum attack on symmetric crypto
Recall: classical security framework fails

Security model inadequate for quantum attackers

- Quantum security models: Still at early stage

Classical proofs can fail against quantum attackers

- Many PostQuantumC only consider classical attackers in proofs

See more in [Song’PQC14]
I. Difficulty of quantum rewinding

- **Rewinding argument**
 - Take snapshot of an adversary & continue
 - Later “rewind” & restart from snapshot

- **Rewinding quantum adversary difficult**
 - Cannot *copy* unknown quantum state
 - Information gain → disturbance on state

⇒ **Quantum security of many classical protocols unclear**

- **Not often seen in PQC literature?**
 - Usually does not affect analysis of encryption, signature, …
 - But does *matter*: e.g. Quantum-secure Identification scheme (to get signature by Fiat-Shamir)
II. Hash function: common heuristic fails?

- **Hash functions are everywhere:**
 - Signature, message authentication, key derivation, bitcoin,…

- **The Random Oracle (RO) heuristic widely used**
 - “Lazy” sampling: decide \(H(\cdot) \) on-the-fly
 - Program RO: change \(H(\cdot) \) adaptively
 - Ease security proof of hash-based schemes (otherwise **impossible**)

- **Quantum-accessible Random Oracle**
 - Nothing appears to work…
 - A lot exciting development restoring classical proofs
III. Quantum attacking symmetric crypto

- These attacks need specific* quantum model
 - Assume attackers have QUANTUM access to the SECRET enc/auth algorithm

- Quantum random oracle is more justified
 - Hash functions are public, any (quantum) user can implement it quantumly

Broken!?

3-round Feistel Cipher
CBC-MAC

...

Simon’s Problem ≡ HSP on \mathbb{Z}_2^n

Easy on a quantum computer

* In my opinion unrealistic but still possible

[KM10] [KLL+16] [SS'16]
Concluding Remarks

How does cryptography change in a quantum world?

Post-Quantum Cryptography

- Hard problems broken
- Construct on new problems
- Need more study on (quantum) hardness
- Security framework fail
- Analyze Security against quantum adv
- Be aware and cautious!
 Many issues unclear

Quantum Cryptography
Possible complement
I’m hiring

- **2-3 PhD students to work on**
 - Quantum algorithms
 - Analyzing quantum security of classical crypto
 - Quantum crypto

- **Maybe 1 Post-doc too**

- **Get in touch if interested**
 - Check my webpage for more: fangsong.info
 - Email: fang.song@pdx.edu

Portland State Computer Science

Young but strong in

- Programming language, machine learning, vision, …
- Portland is absolutely nice in many ways~

Thank you!