A QUANTUM ALGORITHM FOR COMPUTING THE UNIT GROUP OF AN **ARBITRARY-DEGREE NUMBER FIELD** FANG SONG IQC, UNIVERSITY OF WATERLOO Joint Work with: Kirsten Eisentraeger (Penn State) Sean Hallgren (Penn State) Alexei Kitaev (Caltech & KITP)

exponentially

Which problems have faster quantum algorithms than classical algorithms?

- (Number theory problems are a good source)
- ∃ Poly-time quantum algorithms for:
- Factoring and discrete logarithm [Shor'94]
- Unit group in number fields Тнія Work: arbitrary-degree
 - Degree two fields (Pell's equation as a special case) [Hallgren'02]
 - Constant-degree [Hallgren'05,SchmidtVollmer'05]
- Principal Ideal Problem (PIP) and class group computation
 - Constant degree number fields [H'02'05,SV'05]

Best known classical algorithms need super-polynomial time

Reduction & Algorithm for HSP both need to be efficient.

Existing algorithms for **constant**-degree unit finding [H'02'05,SV05]

Difficulty of extending to high degrees

- Reduction takes **exponential** time in degree.
- HSP instance in high dimension hard to solve.

Existing algorithms for **constant**-degree unit finding [H'02'05,SV05]

Quantum Attacks on Classical Cryptography

- Quantum algorithms can break classical crypto-systems
 - Anything based on factoring/D-Log [Shor94]: e.g. RSA encryption...
 - Buchmann-Williams key exchange (based on degree-two PIP) [H'02]

> **OPEN QUESTION**: quantum attacks on (*ideal*) lattice based crypto

- Fully homomorphic encryption, code obfuscation, and more [Gentry09,SmartV'10,GGH+13...]
- Our alg. deals with similar objects: ideal lattices in number fields
- A classical approach [Dan Bernstein Blog 2014]
 - A key component: computing units in classical *sub-exp.* time
 - → This part becomes (quantum) *poly-time* by our alg.

Roadmap of Our Algorithm

Review: Hidden Subgroup Problem (HSP)

Define Continuous HSP on \mathbb{R}^m

 \succ Previous definition: extra constraint on **discrete** f_{δ}

- E.g. pseudo-periodic [H'02]: $f_{\delta}(\lfloor kr \rfloor + x) = f_{\delta}(x)$ for most x.
- Not suitable in high dimensions \mathbb{R}^m .

> Our definition (HSP on \mathbb{R}^m): make f continuous

Given $f: \mathbb{R}^m \to \mathcal{H}$ (quantum states), s.t.: $\exists H \leq \mathbb{R}^m$,

- 1. (Periodic) $x y \in H \Rightarrow |f(x)\rangle = |f(y)\rangle$.
- 2. (Pseudo-injective)

 $\min_{v \in H} ||x - y - v|| \ge r \Rightarrow \langle f(x)|f(y) \rangle \le \epsilon.$ "x - y far from $H \Rightarrow \langle f(x)|f(y) \rangle$ small"

3. (Lipschitz) $|||f(x)\rangle - |f(y)\rangle|| \le a \cdot ||x - y||$. "x - y close to $H \Rightarrow \langle f(x)|f(y)\rangle$ big"

Goal: Find (hidden subgroup) H.

Interesting HSP Instances

Computational Problems		Abelian HSP o	n G
Discrete log	\rightarrow	$\mathbb{Z}_N imes \mathbb{Z}_N$	Tefficient
Factoring	\rightarrow	Z	guantum
Unit group, PIP, class group, constant degree	\rightarrow	\mathbb{R}^{const}	algorithms
[This Work] Unit group, arbitrary degree n	\rightarrow	$\mathbb{R}^{O(n)}$ [New Definition	on]
Computational Problems		Non-abelian HS	P on <i>G</i>
Graph isomorphism	\rightarrow	Symmetric group S _n	
Unique shortest vector	\rightarrow	Dihedral group D_n	
		? efficie	ent alg.
		(open o	question)

Roadmap of Our Algorithm

Number Field Basics

- Number Field $K \subseteq \mathbb{C}$: Finite field extension of \mathbb{Q} . • Ex. 1 (Quadratic field). Take $d \in \mathbb{Z}$, $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$. • Ex. 2 (Cyclotomic field). Take $\omega = e^{2\pi i/p}$, p prime. $\mathbb{Q}(\omega) = \{a_0 + a_1\omega + \dots + a_{p-2}\omega^{p-2} \colon a_i \in \mathbb{Q}\}.$ \succ Ring of Integers $\mathcal{O}: K \cap$ Roots of monic irreducible poly $\mathbb{Z}[X]$. \succ Group of Units \mathcal{O}^* : **invertible** elements in \mathcal{O} . $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}$ Field KRing of $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \in \mathbb{Z}\}$ () \mathbb{Z} integers $\mathcal{O}^* = \{ \pm u^k \colon k \in \mathbb{Z} \}$ $\{\pm 1\}$ O^* Unit group d = 109, $u = 158070671986249 + 15140424455100\sqrt{109}$
 - $u = 100, \quad u = 150070071700247 + 151404244551$ Exercise. Verify $uu^{-1} = 1$.

Complexity of Computing Unit Group

Two parameters for measuring computational complexity

- Degree n: dimension of K as vector space over \mathbb{Q} .
- Discriminant Δ : "size" of ring of integers. [more to come]

 $\mathbb{Q}(\sqrt{d}) = \{a + b\sqrt{d} : a, b \in \mathbb{Q}\}, \quad \boldsymbol{n} = \boldsymbol{2}, \boldsymbol{\Delta} \approx \boldsymbol{d} \\ \mathbb{Q}(\omega) = \{a_0 + a_1\omega + \dots + a_{p-2}\omega^{p-2} : a_i \in \mathbb{Q}\}, \boldsymbol{n} = \boldsymbol{p} - \boldsymbol{1}, \boldsymbol{\Delta} \approx \boldsymbol{p}^{\boldsymbol{p}}$

Goal: computation in time $poly(n, log \Delta)$.

Previous algorithms for computing units

	Classical	Quantum
(Factoring)	$\exp((\log \Delta)^{1/3})$	poly(log Δ)
[reduces to $\mathbb{Q}(\sqrt{d})$ case]		
$\mathbb{Q}(\sqrt{d})$	$\exp((\log \Delta)^{1/2})$	poly(log∆)
$\mathbb{Q}(\omega_p)$	$\exp(n, \log \Delta)$	$\exp(n)$ poly(log Δ)
		This work
		$\operatorname{polv}(n, \log \Delta)$

Roadmap of Our Algorithm

Outline of Quantum Reduction

- 1. Identify \mathcal{O}^* as a subgroup in \mathbb{R}^m , m = O(n).
- **2.** Define $f: \mathbb{R}^m \to \mathcal{H}$ satisfying HSP properties.
 - (Periodic) $x y \in \mathcal{O}^* \Rightarrow |f(x)\rangle = |f(y)\rangle$
 - (Pseudo-injective) x y far from $\mathcal{O}^* \Rightarrow \langle f(x) | f(y) \rangle$ small
 - (Lipschitz) x y close to $\mathcal{O}^* \Rightarrow \langle f(x) | f(y) \rangle$ big
- 3. Compute *f* by an efficient **quantum** algorithm. (omitted)

Set Up Units as a Subgroup

 $\succ \mathcal{O}$ is identified with a lattice \mathcal{O} in \mathbb{R}^n .

• $z \in \mathcal{O} \mapsto \underline{z} := (z_1, ..., z_n) \in \mathbb{R}^n$ (conjugate vector representation)

Lattice $L(B) = \{a_1v_1 + \dots + a_nv_n : a_i \in \mathbb{Z}\} \subseteq \mathbb{R}^n$

- Basis $B: \{v_i \in \mathbb{R}^n : i = 1, \dots, n\}$
- L has (infinitely) many bases
- det(L): volume of fundamental domain
- Discriminant of $\mathcal{O}: \Delta = \det^2(\mathcal{O})$

Log coordinates of units: z ∈ O* → z_i ≠ 0 → write u_i ≔ log|z_i|
Fact: units have algebraic norm 1
z ∈ O* → |N(z)| = Π|z_i| = 1 → ∑u_i = 0.

 $\mathbf{D}^* \leq \mathbb{R}^{n-1} = \{ (u_1, \dots, u_n) \in \mathbb{R}^n : \sum u_i = 0 \}$

N.B.: Not precise; sign/phase info. missing!

Define Hiding Function: Classical Part

f_c {lattices in \mathbb{R}^n } f_q {quantum states} $f: \mathbb{R}^{n-1}$ Input: $\vec{x} = (x_1, ..., x_n)^T$, $\sum x_i = 0 \mapsto \text{Output: } L_x = e^{\vec{x}} \mathcal{O}$ \succ Example. $K = \mathbb{Q}(\sqrt{d}), d \in \mathbb{Z}^+, n = 2, \mathcal{O} \subseteq \mathbb{R}^2$. $f_c: (x, -x) \mapsto e^x \mathcal{O}$ $\forall v = (v_1, v_2)^T \in \mathcal{O}$ $e^{\vec{x}}v \coloneqq (e^x v_1, e^{-x} v_2)^T$ Stretch/Squeeze each coordinate > **Obs**. f_c preserves algebraic norm $\mathcal{N}(z) = \prod z_k$.

17

Real Quadratic Example

 $\succ \mathbb{Q}(\sqrt{102}), n = 2, f_c : \mathbb{R} \rightarrow \{ \text{lattices in } \mathbb{R}^2 \}$

Properties of f_c

- $f: \mathbb{R}^{n-1} \xrightarrow{f_c} \{\text{lattices in } \mathbb{R}^n\} \xrightarrow{f_q} \{\text{quantum states}\}$ $f_c: x \mapsto L = e^x \underline{\mathcal{O}}$
- \mathcal{O}^* -Periodic. (Fact: $u \in \mathcal{O}^* \Rightarrow u\underline{\mathcal{O}} = \underline{\mathcal{O}}$)
 - \rightarrow If $e^{\vec{y}} \in \mathcal{O}^*$, then $e^{\vec{x}+\vec{y}}\underline{\mathcal{O}} = e^{\vec{x}}\underline{\mathcal{O}}$.
- (Lipschitz) "Small" shift in inputs \rightarrow "Similar" lattices in outputs
- (Pseudo-inj) "Big" shift in inputs → "Far-apart" (small overlap) lattices

! Computing f_c delicate: e^x doubly-exp. large & precision loss.

Define Hiding Function: Quantum Encoding

Quantum Straddle Encoding

Straddle encoding a real number in a quantum state.

Encode a vector in \mathbb{R}^n : coordinate-wise straddle encoding

Quantum Straddle Encoding: An Animation

Establish HSP Properties

$$f: \mathbb{R}^{n-1} \xrightarrow{f_c} \{\text{lattices in } \mathbb{R}^n\} \xrightarrow{f_q} \{\text{quantum states}\}$$

Theorem. $f = f_q \circ f_c$ is periodic over \mathcal{O}^* with HSP properties.

• (Lipschitz)
$$x - x'$$
 close to $\mathcal{O}^* \xrightarrow{f_c} L \approx L' \xrightarrow{f_q} \langle L' | L \rangle \approx 1$

• (P-Inj.)
$$x - x'$$
 far from $\mathcal{O}^* \xrightarrow{f_c} L \& L'$ small overlap $\xrightarrow{f_q} \langle L' | L \rangle$ small

→ Invoke quantum HSP algorithm (next), we find O^* efficiently!

Applications of quantum straddle encoding

- A canonical representation for real-valued lattices.
- Can reduce existing (abelian) HSP to our HSP on \mathbb{R}^m .

Roadmap of Our Algorithm

Solving HSP on \mathbb{R}^m : Main Idea

Effect of Truncation

Effect of Discretization

Quantum Algorithm for HSP on \mathbb{R}^m

Quantum Algorithm for HSP on \mathbb{R}^m

Input: oracle function f that hides $H \subseteq \mathbb{R}^m$

> Our Algorithm:

• Create
$$\sum_{x \in \mathbb{Z}} |x\rangle \otimes \sin(\frac{\delta x}{W}) |f(\delta x)\rangle$$
, $N = W\delta^{-1}$

• $\mathcal{F}_{\mathbb{Z}}: |x\rangle \mapsto \int_{y \in \mathbb{R}} e^{2\pi i x y} |y\rangle$ and measure.

✓ Implement by Phase Estimation.

Classical post-processing.

Output: (Generators of) H.

Existing Algorithm:

$$\mathcal{F}_{\mathbb{Z}_N}: |x\rangle \mapsto \sum_{y \in \mathbb{Z}_N} e^{2\pi i \frac{x \cdot y}{N}} |y\rangle \text{ and measure.}$$

Discussion

Future Directions

- Other problems in number fields, function fields...
- Harness the power the continuous (abelian) HSP framework
- Solve (ideal) lattice problems
- → Breaking lattice-based crypto?

Update: PIP and class group in arb. degree solved [BiasseSong'14]

