Efficient quantum algorithms for the principal ideal problem and class group problem in arbitrary-degree number fields

> **Fang Song** Institute for Quantum Computing University of Waterloo

Joint work with Jean-François Biasse (U. South Florida)

exponentially

Which problems have faster |*quantum*〉 *algorithms than classical algorithms?*

- ∃ Poly-timequantum algorithms for:
- Factoring and discrete logarithm [Shor'94]
- Basic problems in computational algebraic number theory
	-
	- Principal Ideal Problem (PIP) & Class group problem
	- Unit group in number fields $\vert\,\,\cdot\,\,\cdot\,\,$ Constant degree [Hallgren'o2'o5, SchmidtVollmer'o5]
		- Arbitrary degree [EHKS'14]
		- Constant degree number fields [H'02'05,SV'05]

This work: arbitrary degree!

Best known classical algorithms need (at least) sub-exponential time

Results and Implications

- Efficient quantum algorithms for several basic problems in number fields of arbitrary-degree
- Examples of quantum exponential speedup
- Minor: converting solutions into **compact representation**

Application: PIP algorithm can be used to break classical crypto

- Smart-V Fully Homomorphic Encryption, GargGH multilinear mapping scheme, … [CGS14,CDPR15,BS15]
- Previously considered quantum-safe (based on ideal lattice problems instead of factoring/DL)

Outline of our quantum algorithms

INPUT: a degree n number field K

Hidden subgroup problem (HSP) framework

Captures most quantum exponential speedup

Standard Def.: HSP on finite group G

Given: oracle function $f: G \rightarrow S$, s.t. $\exists H \leq G$,

- 1. (Periodic on H) $x y \in H \Rightarrow f(x) = f(y)$
- 2. (Injective on G/H) $x y \notin H \Rightarrow f(x) \neq f(y)$

Goal: Find (hidden subgroup) H.

 H $\overline{x + H}$ $G \xrightarrow{f} S$ S_0 $y + H \longrightarrow s_k$

 s_1

- § *Uncountable* group ℝ!: tricky due to **discretization!**
	- Some earlier defs. only suitable for small dimension m [H02,H05,SV05]
	- A "right" def. in high dimensions: continuous HSP [EHKS14]

Continuous HSP **on** ℝ!

(unit vectors $\ket{\cdot}$ in a complex vector space)

Given $f: \mathbb{R}^m \to \{$ quantum states}, s.t.: \exists discrete $H \leq \mathbb{R}^m$,

- 1. (Periodic) $x y \in H \Rightarrow |f(x)\rangle = |f(y)\rangle.$
- 2. (Pseudo-injective) $x y$ **far** from $H \Rightarrow |f(x)\rangle \perp |f(y)\rangle$
- 3. (Lipschitz continuitiy) $x y$ **close** to $H \Rightarrow |f(x)\rangle \approx |f(y)\rangle$

Goal: Find (hidden subgroup) H.

```
\min_{v \in H} ||x - y - v|| \geq r\Rightarrow \langle f(x)|f(y)\rangle \leq \epsilon.|||f(x)\rangle - |f(y)\rangle||\leq a \cdot ||x - y||.
```
Theorem [EHKS14] ∃ efficient quantum algorithm solving continuous HSP on \mathbb{R}^m

 $N.B.: H$ is a Lattice $L(B) = \{a_1v_1 + \cdots + a_mv_m : a_i \in \mathbb{Z}\} \subseteq \mathbb{R}^m$

- Basis $B: \{v_i \in \mathbb{R}^n : i = 1, ..., m\}$
- L has (infinitely) many bases

Interesting HSP instances

Abelian groups ∃ efficient quantum alg.

Non-abelian groups Open question: ? ∃ efficient quantum alg.

Outline of our quantum algorithms

Number Field Basics

- Number Field $K \subseteq \mathbb{C}$: Finite extension of \mathbb{Q} .
	- **Degree n**: dimension of K as vector space over $\mathbb Q$
- **Ex** (Cyclotomic field). $\mathbb{Q}(\omega) = \{a_0 + a_1\omega + \cdots + a_{p-2}\omega^{p-2} : a_i \in \mathbb{Q}\}\omega = e^{2\pi i/p}, p \text{ prime}.$ ■ Ring of Integers $\mathcal{O}: K \cap \mathsf{Roots}$ of monic irreducible poly $\mathbb{Z}[X]$. (e.g. $\mathcal{O}_\mathbb{O} = \mathbb{Z}$)

• $\mathcal{O} = \mathbb{Z}[\omega], n = p - 1$

- Group of S-units U_S : $U_S \coloneqq \{ \alpha \in \mathcal{O} \colon \alpha \mathcal{O} = p_1^{v_1} \cdot ... \cdot p_k^{v_k} \text{ for some } v_i \in \mathbb{Z} \}$
	- $S = \{p_1, ..., p_k\}$ a set of prime ideals
- Special case: Unit group U
	- $S = \emptyset \Rightarrow U_{\emptyset} = U = \{$ invertible elements in $O.\}$

Principal Ideal Problem Given ideal $I \subseteq \mathcal{O}$ decide if $I = \alpha \mathcal{O}$ and find α if so. • i.e. $\alpha \in \mathcal{O}$, s.t. $\alpha \mathcal{O} \cdot \Pi p_i^{-\nu_i} = \mathcal{O}$

- i.e. $\alpha \in \mathcal{O}$, s.t. $\alpha \mathcal{O} = \mathcal{O}$
- Classical alg's: $\exp(n) \exp(|\mathcal{O}|)$
- Quantum alg's: $\exp(n)$ $\operatorname{poly}(|\mathcal{O}|)$
- This work: $poly(n) poly(|\mathcal{O}|)$

Outline of our quantum algorithms

INPUT: a degree n number field K

Reducing S-units to Continuous HSP

Identifying S-units as a subgroup

 $\alpha \in U_{\mathcal{S}} \Leftrightarrow \alpha \mathcal{O} \cdot \Pi_{i=1}^k p_i^{-\nu_i} = \mathcal{O}, \nu_i \in \mathbb{Z}$

 $\blacktriangleright (x, v) \in \Lambda_S \Leftrightarrow L_x \cdot L_y = 0$

Defining hiding function: classical part

■ $g_c(x, v) = L_x \cdot L_v$ 1. $(\Lambda_S$ -periodic) $\Lambda_{\mathcal{A}}$ $(x, v) \in \Lambda_S$

2. (Lipschitz)

"**Small**" shift in inputs \rightarrow "Similar" output lattices

 e^{x_n}

 \cdot 0

3. (Pseudo−inj)

"**Big**" shift in inputs à Small−overlap lattices

Completing the HSP reduction

{lattices in \mathbb{R}^n } g_c ϕ_{S} $\overline{\Lambda_S} \leq \mathbb{R}^m \times \mathbb{Z}^k$ f_{q} {quantum states}

S-Units U_S

F Issue: no unique representation for lattices in \mathbb{R}^n • $L_{x,v} = L_{x',v'}$ same lattice, but $g_c(x,v)$ and $g_c(x',v')$ output different bases. **Fix**: encode lattices in quantum states [EHKS14] • $f_q: L \mapsto |L\rangle$ = superposition over "all" lattice points

 \Rightarrow $\langle L'|L \rangle \propto L \cap L'$

Theorem. $f_S = f_q \circ g_c$ is a continuous HSP instance w. period Λ_S .

- (Lipschitz) $(x, v) (x', v')$ close to Λ_S $\stackrel{g_c}{\rightarrow} L \approx L' \stackrel{f_q}{\rightarrow} \langle L' | L \rangle \approx 1$
- (P-Inj.) $(x, v) (x', v')$ far from Λ_S $\stackrel{g_c}{\rightarrow}$ L & L' small overlap $\stackrel{f_q}{\rightarrow}$ $\langle L' | L \rangle$ small
- What's missing: efficiently implement f_S
	- ! Computing g_c delicate: e^x doubly-exp. large & precision loss

 \rightarrow Invoke quantum HSP algorithm [EHKS14], we find Λ_S efficiently!

Summary

Number field K of arbitrary degree n

Thank you!

- § Future Directions
	- Solving more problems in the continuous HSP framework
	- Quantum attacks on other (ideal) lattice cryptosystems
	- Better quantum algorithms for Non-abelian HSP?