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How do quantum attacks change 

classical cryptography? 

Crypto-systems based on the hardness of factoring and 

discrete-log are broken 

 Factoring and discrete-log are easy on a quantum computer [Shor’97] 

Relax…, there are “hard” problems for quantum computers  

 Lattices, code-based, multivariate equations,  

 Super-singular elliptic curve isogenies 

 … 

 
 Unfortunately, this is not the end of the story… 



 

Reductions may fail against quantum attackers (Even if 𝐿 is 

“quantum-hard”) 

 Many PQC only prove against classical attackers  
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What do We Mean by “Secure”? 

𝑁 = 𝑝𝑞 

𝑝, 𝑞 

𝐴 breaks 

Encryption 

 Provable-security: need a proof, 

a.k.a. security reduction.  

 Assume attacker 𝐴 breaks scheme Π,  

 Construct 𝐵 from 𝐴 that solves a hard 

problem 𝐿. 

𝐵 

 Ex.1 Quantum Rewinding 

 𝐵 runs and rewinds 𝐴  till he’s happy;  

 Difficulty with quantum aux. state. 

 No-cloning! 

 Information gain  disturbance on 𝜌. 

 

𝝆 
? 

𝐵 

𝐴 𝐴 

 So far, only can do quantum rewinding in special cases [Wat09,Unr12].  



 

Reductions may fail against quantum attackers (Even if 𝐿 is 

“quantum-hard”) 

 Many PQC only prove against classical attackers  
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What do We Mean by “Secure”? 

𝑁 = 𝑝𝑞 

𝑝, 𝑞 

𝐴 breaks 

Encryption 

 Provable-security: need a proof, 

a.k.a. security reduction.  

 Assume attacker 𝐴 breaks scheme Π,  

 Construct 𝐵 from 𝐴 that solves a hard 

problem 𝐿. 

𝐵 

 Ex.2 Quantum Random Oracle 

 Classical proofs often treat hash function 𝐻 as a random oracle.  

 Evaluate 𝐻 Query 𝐻 on 𝑥 

 What if a quantum adversary makes superposition queries ∑|𝑥〉? 

 Many classical tricks do not (immediately) work. 

 FYI: a line of beautiful works [Zhandry’12’13,Unruh’Crypto14…] 



 

Main Result: Characterize “Quantum-Friendly” reductions. 

Case 1: Class-Respectful Reductions 

 Common case: adversary has quantum inner working, classical 
interaction with outside world.   

 Formalize sufficient conditions, simple to check. 

 Application: (quantum-safe) one-way functions  Signatures 

 An efficient variant: XMSS [BHH11] (Motivation of this work) 

 Not surprising; just making routine work rigorous and easier  

Case 2: Class-Translatable Reductions 

 Unify a few previous works, e.g., Full-Domain Hash in QRO 
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What I Did in This Work 

Q: What classical security reductions can go through 

against quantum attacks?  

Side: Spell out Provable Quantum Security 

 Before “how”, be clear “what” to do to establish quantum security  
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Review: Provable Classical Security 

C A 
𝑦 = 𝑓(𝑥) 

One-Way Function Game 𝐺 

𝑥′ ∈? 𝑓−1(𝑦) 

𝑥 

C B 𝑦 

𝑥′ 

A 

T 

Reduction 𝑅 = (𝐺, 𝑇, 𝐺′) 

C A 
𝑝𝑘 

Existential-Unforgeable Signature 𝐺′ 

𝑚𝑖 

(𝑠𝑘, 𝑝𝑘) 

𝜎𝑖 = 𝑆𝑠𝑘(𝑚𝑖) 

𝑚∗, 𝜎∗  valid? 

 Computational Assumption  Security Requirement 

 Security Reduction 

Want 𝑤 𝐴, 𝐺′ > 𝜖 ⇒ 𝑤 𝐵, 𝐺 > 𝛿 

Assume 𝑤 𝐴, 𝐺 ≔ Pr 𝐴 𝑤𝑖𝑛𝑠 < 𝛿 

Want 𝑤 𝐴, 𝐺′ ≔ Pr 𝐴 𝑤𝑖𝑛𝑠 < 𝜖 

Usually consider poly-

time adversaries 

Use Games to formalize the following: 
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Provable Quantum Security 

𝐺 

𝐺′ 

𝑅 = (𝐺, 𝑇, 𝐺′) 

Formalize 𝐺′    

Want ∀𝐴 ∈ 𝑄, 𝑤 𝐴 , 𝐺′ < 𝜖 

Classical Quantum 

Does there exist 𝑅 = (𝐺 , 𝑇 , 𝐺 ′), s.t.  

∀𝐴 , let 𝐵 ≔ 𝑇 𝐴 ,  

𝑤 𝐴 , 𝐺 ′ > 𝜖 ⇒ 𝑤 𝐵 , 𝐺 > 𝛿  

(consider quantum poly-time adversaries 𝑸 only) 

Formalize 𝐺  

Assume ∀𝐴 ∈ 𝑄, 𝑤 𝐴 , 𝐺 < 𝛿 

Decide what is proper in your setting 

e.g., allow quantum superposition queries? 

Every component needs a “quantum” inspection 

 

 

 

 Case 1: Game-Preserving 𝐺 = 𝐺 & 𝐺 ′ = 𝐺′ 
• Classical games capture what quantum attackers can 

do, except for inner (quantum) computation power.  

 Case 2: Game-Updating 𝐺 ≠ 𝐺 and/or 𝐺 ′ ≠ 𝐺′ 
• E.g., quantum RO, quantum-accessible signatures,… 

 



 

Basic Idea:  

 Given quantum adversary 𝐴  that wins 

game 𝐺′, find an “equivalent” 

classical adversary 𝐴. 

 Apply classical reduction 𝑅 and get 𝐵. 
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Lifting Game-Preserving Reductions 

 Two conditions to make the basic idea work 

1. Does 𝑅/𝑇 work on 𝐴? 𝐴 may not be poly-time. 

2. Is there a 𝐵 ∈ 𝑄, s.t. 𝐵 =𝐺 𝐵 ?  

𝐴  

𝐴 𝐵 𝑇 
𝑅 

𝑇  

𝐺 𝐺′ 

𝑅  

o Definition. 𝐴 and 𝐴  are 𝐺-equivalent (𝐴 =𝐺 𝐴 ), if 𝑤 𝐴, 𝐺 = 𝑤(𝐴 , 𝐺).  

o 𝐸𝐺 𝑄 = classical 𝐴: ∃𝐴 ∈ 𝑄, 𝑠. 𝑡. 𝐴 =𝐺 𝐴 : collection of classical 

adversaries for which there exists a 𝐺-equivalent poly-time quantum 

adversary.  

 Is 𝐵 ≔ 𝑇 𝐴 ∈ 𝐸𝐺(𝑄)? 

① 

𝐵  

② 



 

Definition. A classical reduction 

𝑅 = (𝐺, 𝑇, 𝐺’) is 𝑄-respectful if 

1. 𝑅 is 𝑄-extendable: ∀𝐴 ∈ 𝐸𝐺′(𝑄),   

 𝑅 is well defined on 𝐴 & 𝐵 ≔ 𝑇(𝐴), 

 𝑤 𝐴, 𝐺′ > 𝜖 ⇒ 𝑤 𝐵, 𝐺 > 𝛿. 

2. 𝑅 is 𝑄-closed: ∀𝐴 ∈ 𝐸𝐺′(𝑄), 𝐵 ∈

𝐸𝐺(𝑄).  
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Lifting Game-Preserving Reductions (Cont’d) 

 Extendibility usually holds and easy to verify. 

Closedness could be subtle 

 E.g. 𝑅 involves rewinding [Unr10]. 

 But sometimes it is straightforward. 

𝐴  

𝐴 𝐵 𝑇 
𝑅 

𝐵  

𝑇  

𝑅  

𝐺′ 𝐺 

Theorem 1. If 𝑹 is 𝑸-respectful, then ∃𝑹  for quantum adv’s 𝑸. 

𝐸𝐺 𝑄 = classical 𝐴: ∃𝐴 ∈ 𝑄, 𝑠. 𝑡. 𝐴 =𝐺 𝐴  



 
Claim. If for any 𝐴 ∈ 𝐸𝐺′(𝑄), 𝑅 is  

 Black-box: 𝐵 uses 𝐴 as a black-box. 

 Straight-line: When 𝐵 runs 𝐴, it never goes back.   

 Value-dominating: 𝑤(𝐴1, 𝐺′) = 𝑤(𝐴2, 𝐺′) ⇒
𝑤(𝐵1, 𝐺) = 𝑤(𝐵2, 𝐺). 

Then 𝑅 is 𝑄-closed. (𝐵 = 𝐵𝐴 ) 
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A Useful Condition for Closedness 

 

𝐵 

𝐴 

OWF 
One-Time 

Signature 

[Lamport] 

Universal One-Way 

Hash Functions 

[Rompel] 

(Full-fledged)  

Hash-Tree Signature 

[Merkle]  Made common belief and some previous claim rigorous (e.g. [IM’PQCrypto11]). 

 Same holds for XMSS [BDH11]: more efficient OTS + (different) Hash tree. 

 More features not checked yet: e.g. forward security…  

 [Zhandry’Crypto13] showed that (with very nice techniques) 

o Collision-Resistant Hash Function ⇒ QQ-secure Signatures. 

o QQ: adversary can ask for superposition signing queries ∑|𝑚〉. 
 

Application: Quantum-safe OWFs ⇒ Quantum-secure Signatures 



 

𝐴 𝐵 

𝐵 ′ 
? 

𝑅 

Upshot: let an interpreter take you to the game-preserving land! 
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Lifting Game-Updating Reductions 

𝐴  

𝑇 

𝐺  𝐺 ′ 

𝐺 𝐺′ 
𝐴 ′ 

𝐼  𝑅  𝐼  

𝐵  

𝑇  

 Definition. A classical reduction 

𝑅 = (𝐺, 𝑇, 𝐺’) is 𝑄-translatable 

if ∃𝐼  s.t.,  

 𝐼  is a “good” interpreter. 

 𝑤 𝐴 , 𝐺 ′ ≈ 𝑤 𝐴 ′, 𝐺′  

 𝑤 𝐵 , 𝐺  ≈ 𝑤 𝐵 ′, 𝐺  

 𝑅 is 𝐼 (𝑄)-respectful. 

 

  Theorem 2. If 𝑅 is 𝑄-translatable, 

then there exists 𝑅 = (𝐺 , 𝑇 , 𝐺 ′). 

 
Application: unify previous results 
 E.g., a more modular proof for Full-Domain Hash in Quantum RO.   

 



 
Takeaways 

 To establish quantum security of a classical scheme, assumptions, 
security definitions, reductions all need to be re-examined. 

 We’ve given characterizations for “quantum-friendly” reductions. 

 Simple cases: there is a tool to ease the routine wok. 

 Future Directions 

 Apply and extend our characterization and tools 

 Many straightforward applications 

 More interesting cases: rewinding, QRO, generic interpreter …   

 Reinvestigate fundamental objects 

 PesudoRandomFunctions  Quantum-accessible PRPermutations? 

 May shed light on quantum unitary designs.  

 Reduction has quantum access to adversary? 

 A different flavor of game-updating reductions.  

 E.g. Quantum Goldreich-Levin [AC’STACS02] 
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Discussions 

Thank you! 


