

Fang Song Portland State U \rightarrow Texas A&M U

JointZhengfeng JiYi-Kai LiuworkU of Technology,NIST &withSydneyU of Maryland

EX. Sampling a random Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$ costs 2^n random coins!

Pseudo-randomness is (as or more) useful

Efficient sampling algorithm
Samples "look" random,
... in the eyes of any efficient observer A

(computationally indistinguishable)

. . .

• $\exists G \text{ efficient: } r_k = G(k)$

• Can compute $F_k(x)$ efficiently

3

Theorem: quantum-secure PRGs & PRFs exist, under reasonable assumptions.

A theory of quantum pseudo-randomness?

Our Contributions

Analogous to pseudorandom string generator

Efficient construction of PRS

- Black-box construction from any quantum-secure PRF
- Equivalent formulations
- Cryptographic no-cloning of PRS
- ➔ Private-key quantum money from any PRS

 Analogous to pseudorandom functions

Understanding the quantum objects

Quantum states

• Quantum bit (qubit) $|\psi\rangle$: unit vector in complex plane \mathbb{C}^2 (continuous!)

• *n*-qubits $|\psi\rangle$: unit vector in $(\mathbb{C}^2)^{\otimes n} = \mathbb{C}^{2^n}$

Haar-random states $|\psi\rangle \leftarrow \mu$

- Testing physics theories: thermalization ...
- Needs exp(n) bits to describe & sample (a fine discretization)

Contrast with PRG

- Bit $b \in \{0,1\}$
- *n*-bit string $s \in \{0,1\}^n$
- Uniform distr. on $\{0,1\}^m$

• Consider a family of *n*-qubit states $\{|\psi_k\rangle\}, k \in \mathcal{K} \subseteq \{0,1\}^n$

Defining pseudorandom quantum states

- **Def. 0.** $\{|\psi_k\rangle\}$ is pseudorandom, if
- 1. Efficient generation of $|\psi_k\rangle$
- 2. Indistinguishable from Haar-random: $\forall \text{poly-time } \mathcal{A}$, $\Pr_{k} \left[\mathcal{A}(|\psi_k\rangle) = 1 \right] - \Pr_{k} \left[\mathcal{A}(|\psi\rangle) = 1 \right] \leq negl(n)$
- An issue with quantum no-cloning
- Classically: one-copy = multi-copy
- Quantum: # of copy matters a lot!

EX. Random basis states $\{|k\rangle\}$

- 1 copy: indistinguishable from Haar-random
- \geq 2 copies: trivially distinguishable

A right def. of pseudorandom quantum states

Def. 1. { $|\psi_k\rangle$ } is pseudorandom, if

- 1. Efficient generation of $|\psi_k\rangle$
- 2. Indist. from Haar-random with multi-copy:

 $\begin{array}{l} \forall \mathsf{poly-time} \ \mathcal{A}, \forall \mathsf{poly} \ q(\cdot) \\ \Pr_{k \leftarrow \mathcal{K}} \left[\mathcal{A}(|\psi_k\rangle^{\otimes q(n)}) = 1 \right] \ - \Pr_{\psi \leftarrow \mu} \left[\mathcal{A}(|\psi\rangle^{\otimes q(n)}) = 1 \right] \leq negl(n) \end{array}$

Defining Pseudorandom Quantum States (PRS)

2 Efficient construction of PRS

Properties and applications

(3)

Equivalent formulations

Our Contributions

- Cryptographic no-cloning of PRS
- ➔ Private-key quantum money from any PRS

Def. 1. (Multi-copy) PRS **Def. 1'**. PRS w. reflection oracle

An equivalent definition

 $\begin{array}{c} & R_{\phi} = I - 2|\phi\rangle\langle\phi| \\ \bullet & |\phi\rangle \to -|\phi\rangle \\ \bullet & \text{Identity on } |\phi\rangle^{\perp} \end{array} \end{array}$

Theorem A. Def. 1. \equiv Def. 1'.

Proof Idea. Use multiple copies of $|\phi\rangle$ to simulate R_{ϕ} .

Theorem B. For any efficient C, $\mathbb{E}_k \langle (|\psi_k\rangle)^{\otimes m}, C(|\psi_k\rangle^{\otimes m}) \rangle \leq negl(n)$

Proof Idea. A good copier gives a good distinguisher

PRS is hard to clone, efficiently

Private-key vs. Public-key sk = vk, only $sk \neq vk$, anyone

bank can verify

w. vk can verify

- Security: no-counterfeiter (VR available for free)
 - Classically impossible

Theorem: any PRS yields a private-key money scheme

Proof. Given PRS { $|\psi_k\rangle$ }, let $|\$_{sk}\rangle \coloneqq |\psi_k\rangle$ Theorem A $|\psi_k\rangle$ hard to clone given VR oracle \Rightarrow Theorem B

• Wisner'69 - present

Quantum money from any PRS

- 1st provable-secure scheme: AC'STOCI2 (from a specific algebraic assumption)
- Our scheme: generic, based on PRF (better confidence & efficiency)

Defining Pseudorandom Quantum States (PRS)

2 Efficient construction of PRS

 Black-box construction from any quantum-secure PRF

Our Contributions

Properties and applications

 $(\mathbf{3})$

Theorem. $\{|\psi_k\rangle\}$ is a PRS.

Pseudorandom

- I. Switch F_k to truly random $f: |\psi_k\rangle \coloneqq \sum_{x \in [N]} \omega_N^{f(x)} |x\rangle$
- 2. Small expected distance between $|\tilde{\psi}_k\rangle$ and $|\psi\rangle \leftarrow \mu$
- Efficient generation: Quantum Fourier Transform

Defining Pseudorandom Quantum States (PRS)

 $(\mathbf{3})$

Initial exploration of pseudorandom unitary operators

Our Contributions

• Analogous to pseudorandom functions

Pseudorandom Unitary Operators

Unitary operator U

- $UU^* = I$: reversible, length-preserving
- Ex. rotation, phase change, ...

Haar-random unitary $U \leftarrow \mu$

- Apps in algorithms, crypto ...
- Needs exp(n) bits to describe & sample (a fine discretization)

Def. $\{U_k\}$ is pseudorandom, if

1. Efficient circuit computing U_k

Q-Secure PRF →

 $\Pi_{k}: \{0,1\}^{n} \rightarrow \{0,1\}^{n}$ quantum-secure pseudorandom permutation

H: change of basis

PRU Candidate

