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Are classical cryptographic protocols  

secure against quantum attackers? 

• Some protocols: no longer secure 

• Computational assumptions broken by efficient quantum alg’s 

• Factoring and Discrete Logarithm [Shor’94] 

• Principal ideal problem [Hallgren’02] 

• Information-theoretical classically secure protocol also broken  

• A two prover commitment scheme becomes non-binding 

[Crepeau,Salvail,Simard,Tapp’06] 

• Attackers only need storing entanglement 

• Many protocols: unknown how to prove security  

• Classical proof techniques may no longer apply: e.g. rewinding 

• General question: how to reason about quantum adversaries? 

 



• Some tasks are achievable 

• Zero-Knowledge (ZK) for NP [Watrous’09]  

• Quantum rewinding in a special case  

• ZK for a larger class of languages [Hallgren,Kolla,Sen,Zhang’08]   

• Coin-flipping [Damgaard,Lunemann’09] 

• Proofs of knowledge (PoK) [Unruh’10] 

 

 

 

 

a. proving security of existing protocols 

b. designing new protocols 
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Question: using classical protocols, is every task achievable 

against classical attackers also achievable against quantum 

attackers? 



Secure Function Evaluation (SFE) 

• Correctness: Jointly evaluate f(x,y) 

correctly 

• Privacy: Bob does not learn anything 

about x beyond f(x,y); same for Alice 
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Alice Bob 

x y 

f(x,y) f(x,y) 

 Parallels classical feasibility results: [Yao’86;Goldreich,Micali,Wigderson’87] 

Main Result: 

∃ classical secure function evaluation protocols  

against quantum attacks 
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 Parallels classical feasibility results: [Yao’86;Goldreich,Micali,Wigderson’87] 

a. Prove a family of classical arguments goes through against 

quantum adversaries 

• Corollary: fully simulatable ZKPoK  quantum-secure SFE  

b. Construct a fully simulatable ZKPoK against quantum adv’s 

• Get around difficulty of quantum rewinding 

• Revisit quantum stand-alone security models (see paper) 

 

Main Result: 

∃ classical secure function evaluation protocols  

against quantum attacks 



• Identify a family of hybrid arguments that goes through against 
quantum adv’s 

 

 

• Adjacent pairs only differs by “simple” changes:  

• E.g., changing the plaintext of an encryption 

• Formalize a Simple Hybrid Argument framework 

• Resembles code-based games [Bellare,Rogaway’06]  

• A classical construction [Canetti,Lindell,Ostrovsky,Sahai’02] fits SHA 
framework 

• [CLOS’02]: fully simulatable ZKPoK  classically secure SFE 

• Corollary: fully simulatable ZKPoK  quantum-secure SFE, assuming 

• Quantum-secure dense encryption & pseudorandom generators 

• Implied by, e.g, Learning-with-errors (LWE) assumption 

D E D’ D’’    
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 Parallels classical feasibility results: [Yao’86;Goldreich,Micali,Wigderson’87] 

a. Prove a family of classical arguments goes through against 

quantum adversaries 

• Corollary: Fully simulatable ZKPoK  quantum secure SFE  

b. Construct a fully simulatable ZKPoK against quantum adv’s 

• Get around difficulty of quantum rewinding 

• Revisit quantum stand-alone security models (see paper) 

 

Main Result: 

∃ classical secure function evaluation protocols  

against quantum attacks 



Alice wants to convince Bob graph G is 3-colorable  

• Zero knowledge: Bob does NOT learn the coloring w 

• ∀ Bob, ∃ Simulator such that ∀ quantum state ρ: 
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w G 

protocol 

ρ 
ρ 

Sim G 

View: transcript + Bob’s state 
transcript + Bob’s state 

 
Quantum 

 

Poly-time 
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• PoK: Bob wants to be sure that Alice has some real w in mind 

• ∀ Alice, ∃ Simulator such that ∀ quantum ρ 

 

 

 

 

 

 

• Extra condition on simulator: if simulated transcript accepts, then 

extracting a 3-coloring w’of G. 

•  “Witness-extended simulator” 

• Fully simulatable: Simulation + Extraction 

G 

protocol 

ρ 

Alice’s state + transcript. 

w’ 

Alice’s state + transcript 

 

ρ Sim 

Quantum 

 

Poly-time 



• Classical technique to construct a simulator: Rewinding 

• In every real interaction, prover answers questions from verifier 

• Without a witness, simulator may not be able to answer all questions  

• Pick a random branch from all interactions, check if could proceed 

• If NOT, “rewind” and try again from the same auxiliary input ρ 

 

 

 

 

 

• Naïve rewinding requires taking a snapshot of the adversary’s 

state and later returning to it 

• Quantum no-cloning! 

• Even just checking success/failure may destroy ρ 
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ρ 
Sim 

r 

ρ 
Sim 

ρ Sim 

r’’ r’ 

 × × 



• Theorem [Watrous’09]: ∃ ZK proof for NP against quantum verifiers. 

• “Oblivious” quantum rewinding 

• If: probability of succ/failure independent of ρ 

• Then: safe to go back; but cannot remember anything 

 

 

 

 

 

 

• However, NOT enough for PoK: Simulation + Extraction 

• Collecting answers from multiple branches  

• Mere extraction is possible [Unruh’10] 

• Unclear how to do both simultaneously 
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ρ 
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Phase 2 

 

 

 

 

 

 

Phase 1 

 

 

 

 

 

 

 

 

G w 

c=Commit(a) 

b 

a 

ZK Proof that  

Decommit(c) =a 

e = Encryptpk(w) 

ZK Proof that  

e encodes a  

witness for G 

pk = a+b: interpret as public key for a 

special encryption scheme  

• Dense: valid public key looks random 

• Lossy: if pk is truly random, then ∀ 

w1, w2 Encryptpk(w1)  Encryptpk(w2) 
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Idea (inherited from Non-

interactive ZK): 

• Start with a “coin-flipping” 

preamble 

• Honest prover can 

make sure the outcome 

is uniformly random 

• A PoK simulator 

(playing the verifier) 

can control the outcome 



Simulator succ. w.h.p because 

input is a true instance 

G 

• The outcome of Phase 1 is 

pk : a truly random string 

• Under such a key, any 

ciphertext can be 

“decoded” to any plaintext 
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Phase 2 

 

 

 

 

 

 

Phase 1 

 

 

 

 

 

 

 

 

c=Commit(a) 

b 

a 

ZK Proof that  

Decommit(c) =a 

ZK Proof that  

e encodes a  

witness for G 

e = Encpk(0,r) = Encpk(w,r’) 

ρaux 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
e = Encpk(w) 

Soundness ensures that: if ZK 

succ, w’ is a valid witness for G 

w.h.p. 

• Simulator succ. w.h.p. because 

comm(0) is indistinguishable 

from comm(a’) 

• If succ.,  coin flipping will be 

a’+b = pk, of which the 

simulator knows the  

decrypting key 

ZK Proof that  

e encodes a  

witness for G 

c = Commit(0) 

b 

a’ = b+pk 

Run Watrous’s simulator  

to fake a proof that 

 c is a commitment of a’ 

(pk,sk) = KeyGen 

e 
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w’ = Decsk(e) 

ρaux 



• Recap:  

• Fully simulatable ZKPoK  quantum-secure SFE 

• ∃ Fully simulatable ZKPoK Protocol 

• Corollary1: Modular composition  Quantum-secure SFE in 

plain model (i.e., no trusted set-up) assuming quantum-secure  

• dense & lossy encryption 

• pseudorandom generator 

• Corollary2: An interesting equivalence: CF = ZKPoK 

• Round-complexity preserving reductions 

• Independent Work [Lunemann,Nielsen’11] 

• Fully simulatable quantum-secure coin-flipping  

• Plug into [GMW’87] and obtain similar feasibility results as ours  

• What I didn’t talk about our work: Models, UC-security etc.  (see paper) 
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• Some key pieces of classical crypto unchanged in 

presence of quantum attackers 

• A lot more remains unclear… 

 

• Open Questions: 

• Can we extend to other settings: e.g., multi-party and 

concurrent security? 

• Round complexity: ∃ quantum-secure constant round ZK/CF?  

• Is there any natural two-party classical protocol that is broken 

by quantum adv’s NOT because of computational 

assumptions? 

Thank you! 
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