Zero-knowledge proof systems for QuantumMA

Fang Song

Portland State University

Joint work with

Anne Broadbent

Zhengfeng Ji

John Watrous

U of Ottawa

U of Technology Sydney

U of Waterloo

How does cryptography **change** in a quantum world?

Quantum attacks

Hard problems broken

- Factoring & DL [Shor'94],
- Some lattice problems [EHKS'14,BS'16,CDPR'16]

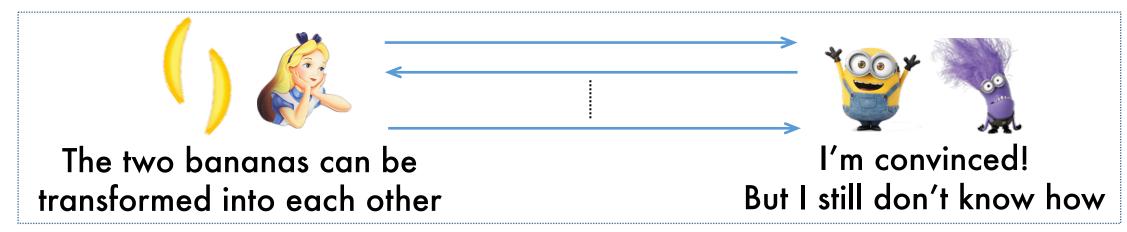
Security analyses fail

- Unique quantum attacks arise
- Difficult to reason about quantum adversaries!

Quantum protocols

Outperform classical protocols

• Ex. Quantum key distribution


Crypto tools for quantum tasks

• Ex. Encrypt quantum data

Today's Topic

Zero-Knowledge proof systems

[GoldwasserMicaliRacoff STOC'84]

What problems can be proven in Zero-Knowledge?

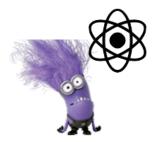
Today in history: ZK for NP

What problems can be proven in Zero-Knowledge?

[GoldreichMicaliWidgerson FOCS'86]

Every problem in NP has a zero-knowledge proof system*

* Under suitable hardness assumptions

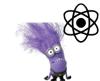

• Invaluable in modern cryptography

Today: ZK in a quantum world

What problems can be proven in Zero-Knowledge quantumly?

1. Do classical protocols remain Zero-Knowledge against quantum malicious verifiers?

2. Can honest users empower quantum capability and prove problems concerning quantum computation?



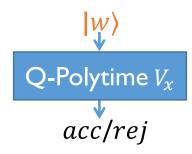
ZK in a quantum world: status

- 1. Classical ZK against quantum attacks: big challenge
 - **Rewinding**: difficult against quantum attackers [Graaf'97]

 Critical for showing ZK classically

- Special quantum rewinding [Watrous'06]
 - GMW protocol can be made quantum-secure
 - many other cases not applicable

2. ZK proofs for quantum problems: little known



Our main result

Every problem in QMA has a zero-knowledge proof system*

quantum analogue of NP (MA)

 Problems verifiable by efficient quantum alg.

• Power: $\exists L$ in QMA NOT believed in NP (ex. group non-membership)

Nice features of our construction:

- Simple structure 3-"move": commit-challenge-respond
- All communication classical except first message
- (Almost) minimal assumption: same as GMW with quantum resistance
- Efficient prover: useful to build larger crypto constructions

Our additional contributions

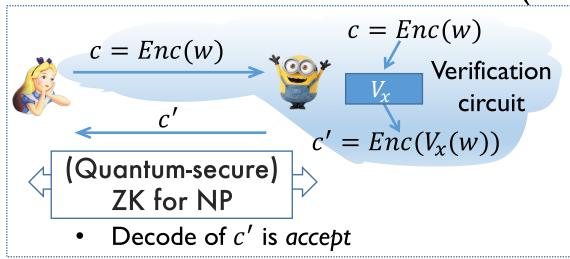
New tools for quantum crypto and quantum complexity theory

Proposing a new complete problem for QMA

Further implications?

Corollary: QMA = QMA with very limited verifier

- Simpler proof than some recent work [MorimaeNF'15'16]
- A quantum encoding mechanism, supporting
 - "somewhat homomorphic"
 - Perfect secrecy
 - Authentication

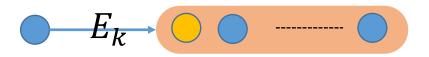

Other applications?

Our construction: ZK for QMA

Inspiration: ZK by homomorphic encryption

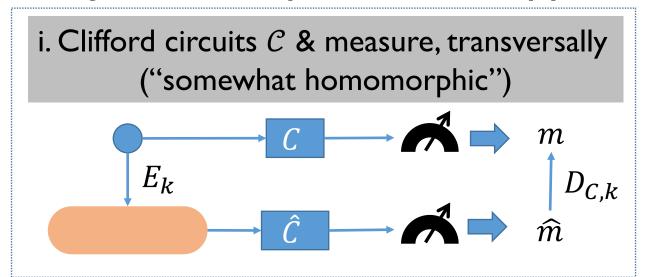
Reductionist's wishful thinking: reduce (ZK for QMA) to (ZK for NP)

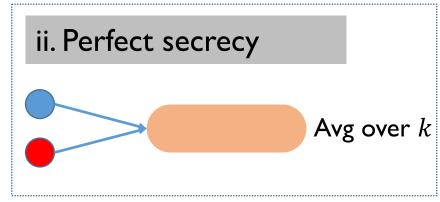
■ I seem to know how to: reduce (ZK for NP) to (ZK for NP)



- Verifier homomorphically evaluates Verification ckt
- Prover proves in ZK: the result encodes "accept"

- Challenges of adapting to QMA:
 - Right tools in the quantum setting: encoding, etc?
 - How to prevent dishonest verifier?


Evaluate another circuit compute 1^{st} bit of w!


Build quantum tool I: a new encoding scheme

* Based on quantum error correcting & (trap) quantum auth. scheme [BGS12]

Augmented trap scheme*, supporting

- iii. Authentication
- Dishonest behavior can be detected
- ullet But: verification of existing QMA-complete problems require more than $\mathcal C$

 \mathcal{C} : simple, non-universal

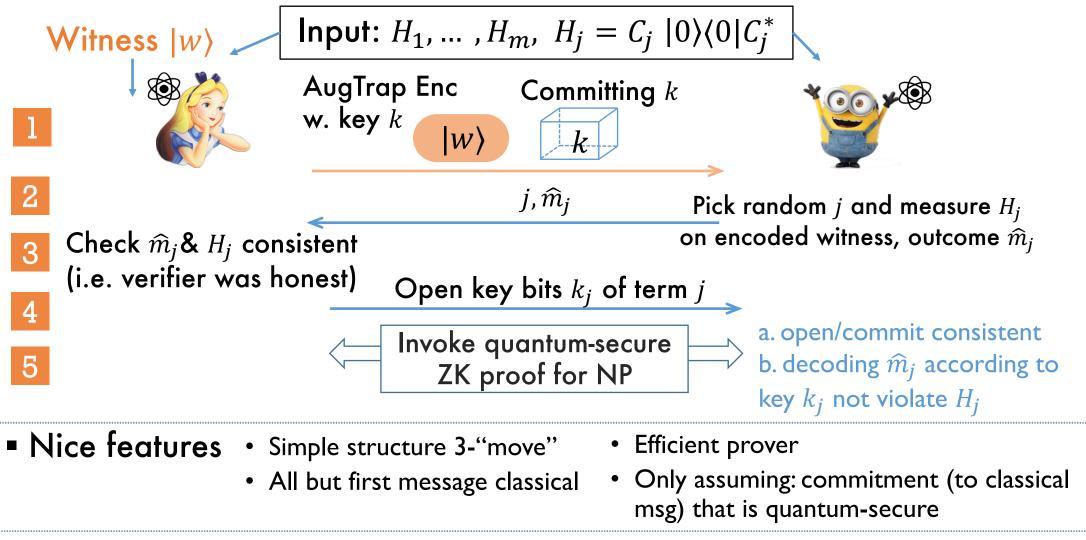
Build quantum tool II: a new QMA-complete problem

Local Clifford-Hamiltonian (LCH) Problem

Verification circuit

- Pick small random part of witness
- Apply Clifford $C \in C$ &measure:
 - non-zero string → accept

Can run **Verification** on encoded witness (by AugTrap) transversally

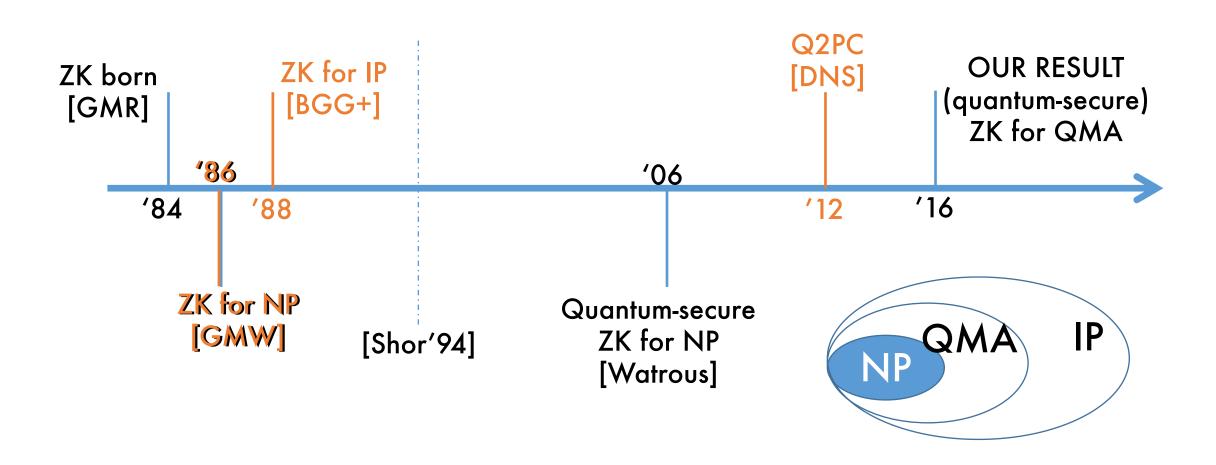

Input: Hamiltonian operators H_1 , ... H_m , each H_j on 5 qubits & of form $C_j |0\rangle\langle 0|C_j^*$

- **YES**: $\exists n$ -qubit state ρ , $\langle \rho, \Sigma H_j \rangle \le 2^{-n}$ (no violation, low eigenvalue)
- **NO**: \forall *n*-qubit state ρ , $\langle \rho, \Sigma H_j \rangle \ge 1/n$ (lots violation, large eigenvalue)

 $C_i \in \mathcal{C}$ Clifford

$$H_j = C_j |0\rangle\langle 0|C_j^*$$

ZK proof system for LCH



Our ZK protocol for LCH works

- Completeness:
- Soundness: ✓
 - Full proof non-trivial, relying on error correcting code & binding of commit
- Zero-knowledge: for any malicious verifier
 - $E_k(|w\rangle) + Can be viewed as hybrid encryption$
 - Verifier's measurement produces classical encrypted msg
 - "Leakage" resilient: k_j doesn't compromise secrecy on remaining qubits

Corollary: any problem in QMA has a ZK proof system

Timeline in retrospect: alternate approaches?

Comparison

	GMW analogue ¹	ZK for IP ¹	Q2PC ¹	Our protocol
All QMA	×	✓	✓	✓
Prover efficiency	✓	×	✓	✓
Mild assumption ²	✓	✓	×	✓
Round #	✓	×	X 3	✓
Availability	✓	V V 4	×	✓

I. plausible, but needs double-check; 2. commitment vs. dense PKE

^{3.} depends on V's ckt; 4. purely classical

Concluding Remarks

Every QMA problem has a "nice" zero-knowledge proof system

New tools for quantum crypto & quantum complexity theory

- QMA complete: local Clifford Hamiltonian Problem
- Augmented Trap encoding scheme

Open Questions

1. ZK for QMA

- purely classical protocol (w. efficient prover)?
- constant-round (CR) w. negl. soundness error:
 - CRZK for NP (Q-Security unknown) → CRZK for QMA

2. Proof of quantum knowledge?

3. QPIP

 verifying a quantum computer by a classical computer

