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Abstract

This paper gives polynomial time quantum algorithms for
computing the ideal class group (CGP) under the Gener-
alized Riemann Hypothesis and solving the principal ideal
problem (PIP) in number fields of arbitrary degree. These
are are fundamental problems in number theory and they
are connected to many unproven conjectures in both an-
alytic and algebraic number theory. Previously the best
known algorithms by Hallgren [20] only allowed to solve
these problems in quantum polynomial time for num-
ber fields of constant degree. In a recent breakthrough,
Eisenträger et al. [11] showed how to compute the unit
group in arbitrary fields, thus opening the way to the res-
olution of CGP and PIP in the general case. For example,
Biasse and Song [3] pointed out how to directly apply
this result to solve PIP in classes of cyclotomic fields of
arbitrary degree.

The methods we introduce in this paper run in quan-
tum polynomial time in arbitrary classes of number fields.
They can be applied to solve other problems in computa-
tional number theory as well including computing the ray
class group and solving relative norm equations. They
are also useful for ongoing cryptanalysis of cryptographic
schemes based on ideal lattices [5, 10].

Our algorithms generalize the quantum algorithm for
computing the (ordinary) unit group [11]. We first show
that CGP and PIP reduce naturally to the computation
of S-unit groups, which is another fundamental problem
in number theory. Then we show an efficient quantum
reduction from computing S-units to the continuous
hidden subgroup problem introduced in [11]. This step
is our main technical contribution, which involves careful
analysis of the metrical properties of lattices to prove the
correctness of the reduction. In addition, we show how to
convert the output into an exact compact representation,
which is convenient for further algebraic manipulations.

1 Introduction

Let K be a number field of degree n and O be an
order in K with discriminant ∆. The ideal class
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group Cl(O) is the finite abelian group consisting
of the invertible fractional ideals of O up to prin-
cipal factors and has order |∆|O(1). Computing the
ideal class group is an essential task in number the-
ory that occurs in particular in the resolution of un-
proven heuristics such as the Cohen-Lenstra heuris-
tics [9] on class groups of quadratic number field, Lit-
tlewood’s bounds [25] on L(1, χ), or Bach’s bound
[1] on the maximum norm of the generators required
to generate the class group. Besides being a fun-
damental problem, computing the ideal class group
is also strongly connected to number theoretic prob-
lems occurring in cryptography. For example, it is
at the heart of the only known unconditional clas-
sical subexponential algorithm for integer factoriza-
tion [24]. Finding relations between elements in
Cl(O) also occurs in curve-based cryptography. In-
deed, both classical [4, 23] and quantum [6] subex-
ponential methods for computing isogenies between
elliptic curves depend on it.

Given an ideal a ⊆ O, deciding whether or not a
is principal, and if so, finding α ∈ O such that a = (α)
is called the Principal Ideal Problem. It has direct ap-
plications to the computation of relative class groups
and unit groups, and computing the S-class group of
a number field. It is is also relevant to lattice-based
cryptography, which has received a considerable at-
tention since it allows quantum-safe cryptosystems
and homomorphic encryption schemes. For efficiency
reasons, there have been many proposals of schemes
using lattices arising from ideals in the ring of in-
tegers of a number field, and in particular principal
ideals generated by a small element (for example, see
the homomorphic encryption scheme of Smart and
Vercauteren [31] and the multilinear maps of Garg,
Gentry and Halevi [18]). It has been recently shown
that solving the principal ideal problem in polynomial
time directly induces a polynomial time attack on
schemes relying on the hardness of finding the short
generator of a principal ideal [10].

Our method for finding the ideal class group of O
and solving the principal ideal problem in O involves
the computation of the S-unit group. Let S be a set of
prime ideals of an order O of K. The set of elements
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α ∈ K such that ∃(ei)i≤|S| ∈ Z|S|, (α) = pe1 · · · pe|S|

is a multiplicative group called the S-unit group of
K. This notion generalizes the units of O which
are S-units for S = ∅, and computing the S-unit
group is an important task in computational number
theory. In particular, it is an essential ingredient
of the resolution of norm equations of the form
NL/K(x) = θ where θ ∈ K, as shown by Simon [30]
and Fieker [15, 17].
Previous work. Computing the ideal class group
and the unit group is a problem that has been
extensively studied in both the classical and quantum
setting. Despite these efforts, there are no known
polynomial time algorithms for these tasks. On
the other hand, there are quantum polynomial time
algorithms for several hard computational problems
in number theory based on quantum algorithms for
the Hidden Subgroup Problem (HSP). Shor showed
that integer factorization and the discrete logarithm
problem could be solved in polynomial time [29], and
Hallgren described a polynomial time algorithm for
solving the Pell’s equation [21]. Similar methods were
used to compute the class group and the unit group in
polynomial time in classes of number fields of fixed
degree [20, 28]. The approach of [20] relies on the
resolution of the HSP in a bounded and discretized
approximation of Rm, which does not seem to apply
when the degree of the fields grows to infinity. In
a recent breakthrough, Eisenträger, Hallgren, Kitaev
and Song [11] described a polynomial time algorithm
for computing the unit group in classes of number
fields of arbitrary degree. One of the main tools they
developed is a continuous HSP definition on Rm and
an efficient quantum algorithm solving it. In essence,
their new HSP definition enforces stringent continuity
properties on the function that hides the subgroup.
This makes the function more amenable to quantum
Fourier sampling.
Our contribution. In this paper, we present quan-
tum algorithms to compute the ideal class group and
solve the principal ideal problem in classes of number
fields of arbitrary degree in polynomial time under
the GRH. We follow a different framework than the
previous work in constant-degree number fields due
to Hallgren [20]. We show that both the ideal class
group computation and PIP reduce to a more gen-
eral problem of computing the S-unit group for suit-
able set of prime ideals S. For example, for the ideal
class group computation S is chosen to be a succinct
generating set of Cl(O). Then we give an efficient
quantum algorithm for computing the S-unit group
by extending the work by Eisenträger, Hallgren, Ki-
taev and Song [11]. We show an efficient quantum
reduction from the S-unit group problem to HSP on

Rm as defined in [11], which then can be solved effi-
ciently by the quantum HSP algorithm in [11]. We
also show how to get exact compact representations
of the desired field elements with respect to a given
integral basis forO, while [11] only returns fixed point
rational approximations of the units. Compact rep-
resentations are usually easier for further algebraic
processing. Our main results are summarized in the
next three theorems.

Theorem 1.1. (S-unit group computation)
There is a quantum algorithm for computing the
S-unit group of a number field K in compact
representation which runs in polynomial time in
the parameters n = deg(K), log(|∆|), |S| and
maxp∈S{log(N (p))}, where ∆ is the discriminant of
the ring of integers of K.

Theorem 1.2. (Class group computation)
Under the Generalized Riemann Hypothesis, there is
a quantum algorithm for computing the class group
of an order O in a number field K which runs in
polynomial time in the parameters n = deg(K) and
log(|∆|), where ∆ is the discriminant of O.

Theorem 1.3. (PIP resolution) There is a
quantum algorithm for deciding if an ideal a ⊆ O
of an order O in a number field K is principal, and
for computing α ∈ O in compact representation such
that a = (α) which runs in polynomial time in the
parameters n = deg(K), log(N (a)) and log(|∆|),
where ∆ is the discriminant of O.

As an important corollary of our quantum algo-
rithms, combining recent works in lattice cryptanal-
ysis [5, 10], our results induce a quantum polynomial
time attack on an entire family of cryptosystems re-
lying on the hardness of finding a short generator of
a principal ideal. See more in Sect. 6.

2 Preliminaries

In this section we review some useful background in
number theory and introduce some definitions and
notations. The notions of ideal class group and S-unit
group are standard, and can be found in many books.
We suggest Neukirch’s book [27] for the fundamental
aspects of this theory and Cohen’s book [7] for the
algorithmic aspects. We invite the reader who is
already familiar to these topics to pay attention to
the non-standard notion of E-ideal that we introduce
in the following.
Number fields. A number field K is a finite
extension of Q. Its ring of integers OK has the
structure of a Z-lattice of degree n = [K : Q], and
the orders O ⊆ OK are the sublattices of OK which



have degree n and which are equipped with a ring
structure. Throughout this paper, we assume that O
is an order in a number field K, and we denote by
ω1, . . . , ωn a Z-basis, that is O = Zω1 ⊕ . . . ⊕ Zωn.
A number field has n1 real embeddings and n2 pairs
of complex embeddings which we denote (σj : K →
R)j≤n1 , ((σj , σj) : K → C)j≤n2 with n1 + n2 =
n = deg(K). These embeddings define two essential
maps, namely the norm and trace maps which are
given by T (x) :=

∑
σ σ(x) ∈ Q and N (x) :=∏

σ σ(x) ∈ Q. The trace map is additive while the
norm map is multiplicative. Note that T (O) ⊆ Z
and N (O) ⊆ Z. We measure the size of the ring O by

log |∆| where ∆ := (det(σj(ωk)))
2

is its discriminant,
and it equals the volume of the fundamental domain
of O. Equivalently, the discriminant can be defined
from the trace map by ∆ := det(T (ωiωj))i,j≤n.
The ideal class group. The fractional ideals of O
generalize the notion of ring ideals of O. They are
the subsets of K of the form a = 1

dI where d ∈ Z+

and I ⊆ O is an (integral) ideal of O. A fractional
ideal a is invertible if a−1 := {x ∈ K | xa ⊆ O}
is also a fractional ideal. The invertible fractional
ideals have a multiplicative group structure, and the
principal fractional ideals are one of its subgroups.
The ideal class group is defined by

Cl(O) := I/P,

where I is the multiplicative group of fractional
invertible ideals of O and P is the subgroup of
elements of I that are principal. This means that
we identify a and b in Cl(O) if there is α ∈ K such
that a = (α)b. Ideals are sublattices of O of rank n,
and we define their norm by N (I) := |O/I|. This
notion naturally extends to fractional ideals using
the multiplicative rule N (a/b) := N (a)/N (b). This
notion of norm extends the norm on K in the sense
that if a = (α), then N (a) = N (α).
The S-unit group. The S-units are a generalization
of the units O∗, which are the invertible elements
of O. The unit group can alternatively be defined
as the α ∈ O with |N (α)| = 1, or the α ∈ O
such that (α) = O. The unit group O∗ satisfies
O∗ ' µ × 〈ε1〉 × . . . × 〈εr〉, where r := n1 + n2 − 1,
µ is the set of roots of unity and the εi are torsion-
free units. Let S = {pi} be a finite set of prime
ideals of O, the S-units are the elements α ∈ K such
that there is (ei)i≤|S| ∈ Z|S| with (α) = pe1 · · · pe|S| .
Note that the S-units are elements of K. They
form a multiplicative group U(S) satisfying U(S) '
µ × 〈ε1〉 × . . . × 〈εr+|S|〉, where r := n1 + n2 − 1, µ
is the set of roots of unity and the εi are torsion-free
S-units.
E-ideals. The number field K can be naturally

embedded into E := Rn1 × Cn2 by setting z ∈ O 7→
(σ1(z), . . . , σn1+n2

(z)). As in [11], we denote byO the
image of O via this embedding. The set O inherits
from the lattice structure ofO, i.e. it can be identified
as a lattice in Rn, as well as from the multiplication
between elements (which is performed component-
wise). The image of the fractional ideals of K in E
are lattices Λ ⊆ E with the property that xΛ ⊆ Λ
for all x ∈ O. We define the E-ideals as all the
lattices in E satisfying this property. When there
is no ambiguity, we identify a fractional ideal of O
and the corresponding E-ideal.

Definition 2.1. (E-ideals) Let E := Rn1 × Cn2

and O the image of O via the embedding K → E. An
E-ideal is a lattice Λ ⊆ E such that ∀x ∈ O, xΛ ⊆ Λ.

Continuous HSP. We review the definition of con-
tinuous HSP proposed by Eisenträger et al. [11], for
which they have shown an efficient quantum algo-
rithm.

Definition 2.2. (Continuous HSP over Rm)
The unknown subgroup L ⊆ Rm is a full-rank lattice
satisfying some promise: the norm of the shortest
vector is at least λ and the unit cell volume is at
most d. The oracle has parameters (a, r, ε). Let
f : Rm → S be a function, where S is the set of unit
vectors in some Hilbert space. We assume that f
hides L in the following way.

1. f is periodic on L, i.e. f(x) = f(x + v) for all
x ∈ Rm and v ∈ L;

2. f is Lipschitz with constant a, i.e.
∥∥|f(x)〉 −

|f(y)〉
∥∥ ≤ a‖x− y‖ for all x, y ∈ Rm;

3. If the distance between the cosets (x mod L)
and (y mod L) is greater or equal to r, i.e. if
minv∈L ‖x− y − v‖ ≥ r, then

∣∣〈f(x)|f(y)〉
∣∣ ≤ ε.

Under these conditions, the problem is to compute
a basis of L by a quantum algorithm that can make
oracle calls |x〉 7→ |x〉 ⊗ |f(x)〉.

Actually, the definition also applies more generally to
other topological groups G = Rk/Λ×D with a proper
metric on G [11, Sect.6.1]. Here G is decomposed to
a continuous part, which is the quotient of Rk over
some lattice Λ, and a discrete part that is finitely
generated. It is nonetheless sufficient to consider
HSP on Rm, because the more general case can be
reduced to HSP on Rm [11], and hence can be solved
efficiently.



3 Overview of the algorithms

Our algorithms for CGP and PIP consist of reductions
to the continuous hidden subgroup problem in two
steps, and invoking the quantum HSP algorithm [11]
at the end.

CGP ≤C SCGP-units ≤Q HSP(RO(n)),

PIP ≤Q SPIP-units ≤Q HSP(RO(n)) .

Specifically, we first reduce them to S-unit problems
with proper choices of S, which are almost entirely
classical except that we apply a quantum algorithm
for factoring ideals in the case of PIP1. We describe
these reductions to S-units problems in Sect. 4. Next
we show a quantum reduction from S-units problem
for any S to HSP(Rm), with m = O(|S|, n). This is
the main technical contribution of this work and it
generalizes the reduction from (ordinary) unit-group
problem to HSP by Eisenträger et al. [11]. The details
will appear in Sect. 5, and we give an overview below.

Given S = {p1, . . . , pk}, we want to establish a
function that hides the S-unit group according to
Definition 2.2. To warm up, we review the reduction
for the ordinary unit group (i.e., S = ∅) [11].
Review: reduction for unit-group [11]. Observe
that the unit group can be identified as a subgroup
of G := Rn1+n2 × Zn1

2 × (R/Z)n2 , and the mapping

ϕ : (u1, . . . , un1+n2
, µ1, . . . , µn1

, θ1, . . . , θn2
)

7→(. . . , (−1)µieui , . . . , . . . , e2πiθieui , . . .) .

translates between the so-called log coordinates and
the conjugate vector representation. To see this, note
that under canonical embeddings, any z ∈ O has
the conjugate vector representation (. . . , σi(z), . . .) ∈
Rn1 ×Cn2 . If in addition z is invertible, then σi(z) 6=
0. Therefore, we can write σi(z) = (−1)µieui with
µi ∈ Z2 and ui ∈ R if σi is real, or σi(z) = e2πiθieui

with θi ∈ R/Z and ui ∈ R if σi is complex.
Now one defines f in [11] as composition of two

mappings:

f : G
g−→ {E-ideals} fq−→ {quantum states} .

Given x ∈ G, g(x) := ϕ(x)O ⊆ E produces an
E-ideal which is a transformed lattice of O. This
is motivated by the fact that αO = O for any
unit α ∈ O∗. Actually, one can verify easily that
g(x) = g(y) iff. ϕ(x − y) ∈ O∗. Namely g is
periodic on O∗. For lacking of a canonical basis

1These reductions are straightforward. But classical algo-

rithms typically compute the S-unit group by solving CGP and
solving instances of PIP first. Our quantum algorithm tackles

these problems in the reverse order.

to represent real-valued lattices uniquely, which is
needed to apply the quantum HSP algorithm, a
quantum mapping fq follows. It encodes a lattice
L into a quantum state |L〉 that is roughly composed
of quantum superposition over all lattice points, and
hence provides a canonical representation for lattices.
We will give more details of the quantum encoding in
Sect. 5.1.

Very informally, one can show that small shift
on an input to g causes small variance on the out-
put lattice, but two inputs that are far apart modulo
any unit will be mapped to lattices that have small
overlap. Moreover, fq preserves the “closeness” of lat-
tices. Namely, quantum encodings of two lattices will
have substantial inner product if and only if the lat-
tices are very well lined up. To formalize these state-
ments and thus proving the HSP properties, nonethe-
less, turn out to be highly non-trivial. It involves for
example defining proper distance measures on various
input and output spaces, and analyzing the continu-
ity properties of f with respect to these metrics. This
has been a great amount of efforts in [11] with further
details in [12]

Other than these analytic properties, to make an
efficient reduction, one needs to implement f = fq ◦g
efficiently. In fact, fq can be implemented efficiently
on a quantum computer by standard techniques.
Computing g, on the other hand, is much more tricky.
For instance eui will involve doubly-exponential num-
bers if we manipulate them naively. Instead one splits
the computation into small pieces, in the spirit of
repeated squaring, and carefully controls the preci-
sion. There is one key observation that guarantees
that the size of any intermediate step does not blow
up. That is N (z) = ±1 for any unit z and hence∏n1

i=1 e
ui
∏n2

j=1 e
2un1+j = 1. This indicates one re-

dundant coordinate, and we can hence restrict f on
Rn1+n2−1 × Zn1

2 × (R/Z)n2 instead. This character-
ization is also essential to show a suitable bound on
the volume of the unit cell of O∗.
Reducing S-units to HSP. It is now easier to
describe our generalized reduction for S-units. Let
S = {p1, . . . , pk}. By definition, if α ∈ O is an S-
unit, we have

α · O · p−vp1
(α)

1 · · · p−vpk
(α)

k = O,

where vp(α) is the coefficient of p in the power of
(α)O (the valuation of α at p). Therefore the group
of S-units U(S) is the subgroup of Ĝ = Rn1+n2 ×
Zn1

2 × (R/Z)n2×Zk. This motivates us defining the

function ĝ : Ĝ→ {E-ideals} by:

ĝ : (y, v1, . . . , v|S|) 7−→ φ(y) · O · p−v11 · · · p−v|S|
|S| .



We can show that (Prop. 5.1) ĝ is periodic on
U(S). We then apply the same quantum encoding
fq on the output of ĝ. Namely, our oracle function
behaves like:

f̂ : Ĝ
ĝ−→ {E-ideals} fq−→ {quantum states} .

While the classical mappings g and ĝ bear some
similar motivation and we reuse fq, to prove HSP

properties of our function f̂ is far from straightfor-
ward. We need to define new metrics tailored to the
specific group structure that the S-units belong and
the E-ideals (lattices in Rn) that our ĝ may possi-
bly generate. Then we show quantitatively that un-
der these metrics, small variance in inputs induces
slightly perturbed lattices, whereas large variance of
inputs modulo any S-units will induce with high frac-
tion of mismatch. Finally we relate the new metrics
to the analysis of [11] and conclude the HSP prop-

erties. We further extend the function f̂ to obtain
an HSP instance on Rm and work out the necessary
bounds (λ, d) as required, which allows us to invoke
the quantum HSP algorithm to recover U(S).

Again, efficient implementation of ĝ needs extra
care. We need to split the computation differently
due to the

∏
p
−vj
j part. It is also important to

notice, similar to the unit-group case, that the S-
unit group actually forms a subgroup of Rn1+n2−1 ×
Zn1

2 × (R/Z)n2 × Zk. That is, for a given S-unit α,
the information given by the |σj(α)| for j≤n1 + n2

and vp(α) for p ∈ S is redundant. Indeed, if α is an
S-unit, then

N (α) · N

 ∏
j≤|S|

p−vpj
(α)


=
∏
j≤n

elog(σj(α)) ·
∏
j≤|S|

e−vpj
(α)ej log(pj) = 1,

where ej ≤ n and pj are such that N (pj) = p
ej
j ,

and where log(x) denotes the natural logarithm of x
(we us log2(x) for the base-2 logarithm). Therefore
|σn1+n2

(α)| satisfies

log(|σn1+n2(α)|) =− 1

2

∑
j≤n1

log(|σj(α)|)

−
∑

n1<j<n1+n2

log(|σj(α)|)

+
1

2

∑
j≤|S|

vpj
(α)ej log(pj).

More details will appear in Sect. 5.1. Note that the
solution of HSP is given to us as approximations

of generators of the hidden subgroup. For many
applications, an exact (and polynomially bounded)
representation is preferable. Therefore, we process
the solutions to the S-units problem classically to
produce a compact representation of the generators
of the S-unit group.

Definition 3.1. (Compact representation)
Let l > 0 be a constant, a compact representation
of α ∈ O with respect to the integral basis (ωj)j≤n
of O is a set of exact representations of polynomial

size algebraic numbers γj satisfying α = γ0γ
l
1 · · · γl

k

k ,
where k is polynomial in the size of the input.

Recently, Biasse and Fieker [2, Sec. 5] described an
efficient method based on [16, Alg. 7.53] to classically
compute a compact representation of an algebraic
number in polynomial time. These methods rely
on the knowledge of an exact representation of the
algebraic number we wish to represent (which is not
the case here). A modification of [16, Alg. 7.53] using
the approximation of the vector corresponding to an
algebraic number yields a compact representation of
that number. This extension uses well known lattice
techniques and the details will be presented in the
full version of this work.

4 Reducing CGP and PIP to S-units problem

As a motivating example, note that computing the
(ordinary) unit-group problem reduces to S-units
problem trivially by setting S to be the empty
set. Next we show how to reduce CGP and PIP
to computing S-units. There is an important ob-
servation about S-units that will be useful. Let
S = {p1, . . . , pk} be a set of prime ideals and let
U(S) = µi × 〈ε1〉 × . . . × 〈εr+k〉. Each εi ∈ O
can be represented by (ui, vi,1, . . . , vi,k) such that
ui = (σ1(εi), . . . , σn1+n2(εi)), vi,j = vpj (εi) for j =

1, . . . , k, and more importantly (εi) =
∏k
j=1 p

vi,j
j .

We define L(S) ⊆ Zk to be the lattice generated by
{(vi,1, . . . , vi,k)}r+ki=1 . The following statement follows
almost immediately from the definition of S-units.

Lemma 4.1. Let U(S) and L(S) be as defined above.

Let a :=
∏k
i=1 p

zi
i be an ideal with zi ∈ Z, i ∈ [k].

Then a = (α) for some α = µ
∏r+k
i=1 ε

xi
i ∈ U(S) with

xi ∈ Z, i ∈ [r + k] iff. (z1, . . . , zk) ∈ L(S) with
zj =

∑
i xivi,j for j ∈ [k].

Proof. Suppose that a =
∏

pzii = (α) for some
α ∈ U(S). Therefore α =

∏
εxi
i for some xi ∈

Z, i = 1, . . . , r + k, and hence (α) =
∏
i(εi)

xi . Since
(εi) =

∏
j p

vi,j
j , we have that (α) =

∏
i(
∏
j p

vi,j
j )xi =∏

j p
∑

i xivi,j
j . By unique factorization of ideals, zi =



∑
i xivi,j and hence (z1, . . . , zk) ∈ L(S). Likewise,

the exact same argument goes through in the reverse
direction as well. �

Class group problem. To ensure an efficient
reduction, we need a polynomial time generating set
for the ideal class group. As pointed out in [2, Sec.
3.2], this directly derives from [1] (in the standard
case where O = OK the maximal order of K, the
factor 48 can be replaced by 12).

Fact 4.1. Let B := {p ⊆ O prime : N (p) ≤
48 log(|∆|)2} be the set of all prime ideals of O
of norm up to 48 log(|∆|)2. Under the Generalized
Riemann Hypothesis (GRH), B generates Cl(O), the
size of B is polynomial in log(|∆|), and can be
computed in time polynomial in log(|∆|).

Now let SCGP = B = {p1, . . . , pN} as given in
Fact 4.1. Consider the surjective morphism

ZN ϕ−−−−→ I π−−−−→ Cl(O)

(e1, . . . , eN ) −−−−→
∏
i p
ei
i −−−−→

∏
i[pi]

ei
,

and note that the class group Cl(O) is isomorphic to
ZN/ ker(π ◦ϕ). Therefore, computing the class group
boils down to computing ker(π ◦ϕ), which consists of
all (e1, . . . , eN ) such that

∏
peii is a principal ideal.

By Lemma 4.1, ker(π ◦ ϕ) is exactly L(SCGP). As
a result, the Smith Normal form of L(SCGP), which
can be computed efficiently [19, 26], will reveal the
desired decomposition of Cl(O). This is summarized
in Algorithm 1.

Algorithm 1 Reducing CGP to S-units

Input: O
1: Let SCGP = {p ⊆ prime | N (p) ≤ 48 log(|∆|)2}

with |SCGP| = N .
2: Compute a set of generators for the SCGP-unit

group U(SCGP): {(ui, vi,1, . . . , vi,N )}r+Ni=1 .
3: Compute diag(d1, . . . , dn), the Smith Normal

Form of (vi,j)i∈[r+N ],j∈[N ].
4: return d1, . . . , dn.

Principal ideal problem. Given an ideal a by
a Z-basis, consider its prime factorization as a =
pa11 · · · p

ak
k , which can be obtained efficiently by

adapting Shor’s quantum factoring algorithm [29, 14].
Let SPIP = {p1, . . . , pk} be the prime divisors and
clearly a is principal if and only if a = (α) for an
SPIP-unit α. By Lemma 4.1, this is equivalent to
(a1, . . . , ak) ∈ L(SPIP). Therefore, to decide if a is
principal, it suffices to check (aj) ∈ L(SPIP) which
can be done efficiently by solving a linear system. If
so, and suppose aj =

∑
i xivi,j with xi ∈ Z, i ∈ [r+k],

then α :=
∏r+k
i=1 ε

xi
i gives a generator of a. The re-

duction is described in Algorithm 2.

Algorithm 2 Reducing PIP to S-units

Input: O and an ideal a ⊆ O.
1: Factor a =

∏
p
aj
j . Let SPIP = {p1, . . . , pk} be the

divisors of a.
2: Compute the SPIP-unit group U(SPIP) = µ×〈ε1〉×
. . . × 〈εr+k〉. Note that εi = (. . . , vi,1, . . . , vi,k)

with εi =
∏k
j=1 p

vi,j
j . Let M = (vi,j).

3: Solve for (x1, . . . , xr+k)M = (a1, . . . , ak) with
xi ∈ Z, i ∈ [r + k].

4: return
∏
i ε
xi
i or “not principal” if the system

has no solution.

5 Reducing S-units problem to continuous
HSP

In this section, we show a quantum reduction from
computing S-units to HSP for an arbitrary S. We
define a function f in Sect. 5.1, which is periodic on
the S-unit group. We also show that this function can
be implemented efficiently on a quantum computer.
Next we show in Sect. 5.2 that the function satisfies
the conditions of the continuous HSP definition. In
Sect. 5.3, we complete the remaining pieces of the
reduction such as proving the geometric bounds of
the S-unit group.

5.1 Defining the oracle function (y,v) 7→
|ϕ(y)O

∏
p∈S p

−vi〉
As we informally discussed in Sect. 3, we define f as2

f : G
fc−→ {E-ideals} fq−→ {quantum states} ,

where G = Rn1+n2 × Zn1
2 × (R/Z)n2 × Z|S|. Specifi-

cally, fc maps (y,v) ∈ G to a rational approximation
of a basis for the E-ideal

(5.1) fc(y, v1, . . . .v|S|) = φ(y) · Op−v11 · · · p−v|S|
|S| .

We show that fc is periodic on U(S).

Proposition 5.1. For any (y, (vj)) and (y′, (v′j)),
let (u, (wj)) = (y′, (v′j))−(y, (vj)). Then the function
fc satisfies that

• fc(y′, (v′j)) = f(y, (vj))⇐⇒ φ(u) ∈ U(S).

• vpj
(φ(u)) = wj ,∀j = 1, . . . , |S|.

2Here we overload the notations of f , G, and rewrite ĝ as

fc to emphasize that it is a classical function.



Proof. If φ(u) ∈ U(S), fc(u, (wj)) = O and
fc(y

′, (v′j)) = fc((y, (vj) + (u, (wj))). Reciprocally,
if fc(y

′, (v′j)) = fc((y, (vj) + (u, (wj))), then φ(u) ·O ·
p−v11 · · · p−v|S|

|S| = O. In particular, there exist α ∈∏
j p
−vj
j ⊆ K and β ∈ O such that φ(u) = β/α ∈ K.

Therefore u ∈ K and has to be an S-unit. �

Note that the naive computation of fc
involves computing (eui)i≤n1+n2

, where y =
(u1, . . . , nn1+n2

, θ) with a phase θ ∈ Zn1
2 × (R/Z)n2 .

Any rational approximation of eui has at least
dlog2(eui)e ∈ O(ui) bits where log2 denotes the
base 2 logarithm. As this is exponential in the bit
size of the entry, we need to proceed differently to
evaluate fc. The authors of [11] described a way
to split up the computation ensuring that we only
manipulate values of polynomial size. We adapt this
method to our specific classical oracle that differs
by a term of the form

∏
pi∈S p

−vi
i from the one

described in [11].

Proposition 5.2. The methods of [11] can be
adapted to evaluate etO

∏
p∈S p

−vi in a polynomial
number of multiplications between E-ideals of deter-
minant

√
|∆|.

The arithmetic between E-ideals is directly in-
spired from the arithmetic between ideals in a num-
ber field. To evaluate our classical oracle, we need
an efficient implementation of the E-ideal multipli-
cation. Let A = ⊕j≤nZaj and B = ⊕k≤nZbk be
E-ideals generated by the aj , bk ∈ E. Then the E-
ideal A ·B is the lattice generated by the n2 elements
(aj · bk)j,k≤n. The multiplication of two E-ideals can
be described by the two following steps:

1. Calculate all the cross terms aj · bk for j, k ≤ n.

2. Compute a basis (cj)j≤n of
∑
j,k Zaj · bk.

The main challenge of E-ideal multiplication is that
we need to deal with rational approximations of
lattices. We need to estimate how much precision is
needed to ensure accuracy, and how much precision is
lost after each operation. Knowing how to bound the
number of operation between E-ideals and the cost of
each operation allows us to estimate the asymptotic
complexity of the classical oracle.

Theorem 5.1. The E-ideal multiplication between
E-ideals of determinant

√
|∆| requires a polynomial

number of bits of precision and runs in polynomial
time. The complexity of the classical oracle is in

Õ
(
‖(y, v)‖2n5+ε

((
n log (|∆|) + n2 + ‖(y, v)‖2

)1+ε
)

+|S|max
j

(log(pj)
3)

)
,

where ε > 0 is arbitrarily small.

Quantum Encoding fq. Once we have obtained
a basis for an E-ideal from fc, we use the same
quantum encoding proposed in [11] to encode the
ideal (lattice) in a quantum state. This gives a
(quantum) canonical way of representing real-valued
lattices uniquely, which is needed later to apply the
quantum algorithm for solving HSP. Here we give a
brief review of the quantum encoding fq.

Let gs(·) be the Gaussian function gs(x) :=

e−π‖x‖
2/s2 , x ∈ Rn. For any set S ⊆ Rn, denote

gs(S) :=
∑
x∈S gs(x). Given a a lattice L, the

quantum encoding maps L to the lattice Gaussian
state via

fq(L) = |L〉 := γ
∑
v∈L

gs(v)|strν,n(v)〉,

where S = {unit vectors in a Hilbert space} and γ is
a factor that normalized the state. Here |strν,n(v)〉 is
the straddle encoding of a real-valued vector v ∈ Rn,
as defined in [11]. Intuitively, one discretizes the
space Rn by a grid νZn, and encodes the informa-
tion about v by a superposition over all grid nodes
surrounding v. Specifically, for the one-dimensional
case, the straddle encoding of a real number is

x ∈ R 7→ |strν(x)〉 := cos(
π

2
t)|k〉+ sin(

π

2
t)|k + 1〉 ,

where k := bx/νc denotes the nearest grid point
no bigger than x and t := x/ν − k denotes the
(scaled) offset. Repeat this for each coordinate of
v = (v1, . . . , vn) we get |strν,n(v)〉 :=

⊗n
i=1 |strν(vi)〉.

Fact 5.1. ([11]) Let L be an LLL-reduced basis.
Assume that λ1(L) ≥ λ, det(L) ≤ d and s ≥
nn/2+12nλ−n+1d. There is a quantum algorithm that
takes L as input and produces a state that is 2−Ω(n)-
close to |L〉 = γ

∑
v∈L gs(v)|strν,n(v)〉 within time

poly(n, log s, log 1
ν ).

5.2 Analyzing the HSP properties of f

In this section, we discuss the properties that the
function f : G → S hiding U(S) needs to satisfy
by rephrasing Definition 2.2 for the group we are
interested in.

Definition 5.1. (HSP property) We say that f :
G → {Quantum states} satisfies the HSP property
for a discrete subgroup H ≤ G if

1. f is periodic on H, that is f(x+u) = f(x) ∀x ∈
G, u ∈ H,



2. f is Lipschitz for some constant a : ∀ x, y ∈
G/H, ‖|f(x)〉 − |f(y)〉‖ ≤ a · dG/H(x, y),

3. There are r, ε > 0 such that ∀ x, y ∈ G/H, if
dG/H(x, y) ≥ r, then |〈f(x)|f(y)〉| ≤ ε,

where dG/H(·, ·) denotes a distance on G/H.

Because the input includes valuations vi of a
power-product of prime ideals, our classical oracle
significantly differs from the one used to hide the unit
group in [11]. We need to define metrics on G and the
set of E-ideals arising as the images of an element in
G, together with a careful analysis of the topological
properties of the oracle with respect to this metric.

Definition 5.2. (Distance on G/U(S)) Let
(z, (vj)j≤|S|) and (z′, (v′j)j≤|S|), we define their
distance in G/U(S) by

inf

‖a‖+
∑
j

|wj |ej log(pj) such that

(z′, (v′j)) = (z, (vj)) + (a, (wj)) + u, u ∈ U(S)
}
,

where ‖a‖ is the Euclidean norm of the vector corre-
sponding to a in Rn1+n2×Zn1

2 ×(R/Z)n2 (note that we
take the phase into account). The pj , ej are defined
as N (pj) = p

ej
j .

Definition 5.3. (Distance between E-ideals)
Let L and L′ be two E-ideals arising as the image
of elements in G by the classical encoding fc, and
L∆ := L′/L. We define

dist(L,L′) := inf

‖a‖+
∑
j

log(dj) + n log(d)

such that L∆ = ediag(aj)Bω diag(dj/d)
}
,

where L∆ runs over all the matrices of a basis of L′/L
such that there is a matrix Bω of an integral basis of
O, dj , d ∈ Z>0, and ‖a‖ is the Euclidean norm of the
vector a ∈ Rn1+n2 × Zn1

2 × (R/Z)n2 corresponding to
(aj)j≤n ∈ E satisfying L∆ = ediag(aj)Bω diag(dj/d).

Proposition 5.3. Definition 5.3 defines a distances
between lattices arising as the image of an element of
G by the map (5.1).

Let G and f = fq ◦ fc be as defined before, we are
able to prove Theorem 5.2 and Theorem 5.3, which
ensure that our oracle satisfies the HSP property.

Theorem 5.2. There exists a > 0 such that for
any x, y ∈ G/U(S), ‖|f(x)〉 − |f(y)〉‖ ≤ a ·
distG/U(S)(x, y) .

Theorem 5.3. There are r > 0 and ε > 0 such that
dG/U(S)(x, y) ≥ r ⇒ |〈f(x)|f(y)〉| ≤ ε .

5.3 Completing the reduction

We have shown that the S-unit group corresponds
to the periods of a function on Rn1+n2−1 × Zn1

2 ×
(R/Z)n2 × Z|S| satisfying the continuous HSP prop-
erty. To invoke the algorithm described in [11], we
need to reduce further to an instance of the continu-
ous HSP on Rm for some m > 0. This follows similar
arguments as in [11, Sect.6.1]. A formal proof is de-
ferred to the full version.

Theorem 5.4. Let f : G = Rn1+n2−1 × (R/Z)n2 ×
Zn1

2 × Z|S| → S be an (a, r, ε) oracle function that
hides L with λ1(L) ≥ λ and Vol(G/L) ≤ d. Then it
reduces to an HSP instance g : Rm → S that hides L̃
with m = 2(n1+n2)+|S|−1, λ1(L̃) ≥ λ,Vol(Rm/L̃) ≤
dλn1 and parameters ε = ε,

a =

√
a2 + |S|( π

2ν
(1 + ν))2 + n2(

π

2νλ
(1 + ν))2,

r =

√
(2r + 2|S|ν)

2
+ n2(2νλ)2.

In addition g can be instantiated efficiently on a
quantum computer with access to f .

According to Definition 2.2, we still need to de-
rive bounds for the first minima and the fundamental
volume of the lattice of S-units, which the complexity
of the algorithm for solving the HSP depends on. We
show such bounds by an analogue of Dirichlet’s unit
theorem.

Proposition 5.4. The first minima of U(S) ⊆ G

satisfies λ1(U(S)) ≥ log(n)
6n4 where the norm on

elements of G is defined by ‖(z, v1, . . . , v|S|)‖ :=√∑
j z

2
j +

∑
j |vj |ej log(pj). Moreover, the volume of

the lattice of S-units satisfies

Vol(G/U(S)) ≤ 1

log(2)|S|

(
300 log(P )

√
|∆|

(e
2

log(|∆|)
)n−1

)|S|+r−n
2

,

where P = maxj N (pj).

We can now invoke the efficient quantum algo-
rithm for HSP on Rm proposed in [11, Theorem 6.1].
Pick a fine enough discrete grid δZm and a sufficiently
broad and smooth window function w, we create a su-
perposition of grid points with in the window, eval-
uate the function, and then measure the state in the
Fourier basis. With sufficiently many samples, one
obtains an approximate generating set of L∗, from
which one can compute a basis for L as well within
the desired precision.



6 Applications and Discussion

There are a few recent cryptosystems relying on the
hardness of finding a short generator of a principal
ideal (short-PIP) of the cyclotomic ring Z[X]/(X2n

+
1). Typical examples of these schemes are the
fully homomorphic encryption scheme of Smart and
Vercauteren [31] and the multilinear maps of Garg,
Gentry and Halevi [18]. Following an observation
of CESG scientists Campbell et al. [5, Sec. 3], the
short-PIP reduces to the PIP (a fact rigorously proved
later by Cramer et al. [10]). The task of recovering
an arbitrary generator of an ideal in Q(ζ2n) (PIP
under the promise that the ideal is principal) was
conjectured to be feasible in quantum polynomial
time by Campbell et al. [5], but the algorithm they
proposed seems to have an exponential run time [3,
Sec. 5]. Biasse and Song [3] later adapted the unit
group algorithm of Eisenträger et al. [11] to derive
a polynomial time solution to this task. However,
the algorithm proposed in [3] is limited to cyclotomic
fields and assumes a priori that the ideal is principal.
Our algorithm for the PIP in arbitrary fields leaves
the door open for further generalizations of the
attacks against cryptosystems relying on the short-
PIP in Q(ζ2n) to other schemes using ideal lattices. In
particular, there is currently a lot of attention around
the possibility of reducing the NTRU problem [22] to
an instance of the short-PIP in a quadratic extension
of Q(ζ2n).

Our work also has direct applications in compu-
tational number theory. Indeed, the S-unit group is a
central object that can be used in a lot of algorithms.
It usually is computed together with the so-called S-
class group, which is the quotient of the group of
ideals in the ring of S-integers by the subgroup of
principal ideals. The S-class group can easily be de-
rived from the ideal class group and an oracle for the
PIP by quotienting the class group by extra relations.
A description of this method can be found in Simon’s
PhD thesis [30, Chap. 1].

Another consequence of our work is that it im-
plies a polynomial time algorithm for computing the
relative class group and the relative unit group of an
arbitrary extension of number fields. Algorithms for
these tasks are already known [8, Ch. 7], but their
run time is exponential in the degree of the fields.
As for the S-class group, they also consist of using a
complete set of relations for the ideal class group and
of enriching it with new relations that are obtained
by solving instances of the PIP.

Our algorithms also directly imply a quantum
algorithm for computing the ray class group of an
arbitrary number field. The computation of the ray
class group is an essential task in computational class

field theory. A classical method due to Cohen can be
found in [8, 3.2] and has an exponential run time with
respect to the degree (but runs in subexponential
time for classes of fixed degree number fields). A
quantum algorithm was described by Eisenträger and
Hallgren [13] with a polynomial run time in classes of
fixed degree number fields. As for the aforementioned
tasks, computing the ray class group essentially relies
on subroutines for computing the ideal class group
and solving the PIP, for which we provide polynomial
time algorithms in arbitrary number fields. It also
relies on algorithms for factoring ideals and solving
the discrete logarithm, both of which are easy on a
quantum computer [29, 14].

Finally, our work allows us to describe polyno-
mial time algorithms for solving relative norm equa-
tions of the form NL/K(x) = θ where L/K is an
arbitrary Galois extension. Norm equations are an
important example of Diophantine equations which
are a major topic in number theory. The resolution
of the Pell’s equation (for which there is a quantum
algorithm [21]) can be seen as a special case where
L = Q(

√
∆), K = Q and θ = 1 (when we restrict our

attention to integer solutions). Solving norm equa-
tions in general is an important task in computational
number theory. A classical method was described by
Simon [30] (based on the work of Fieker [15] for Ga-
lois extensions) that solves general extensions in ex-
ponential time in the degree of the fields. For the
Galois case, it simply uses the knowledge of the S-
unit group and the relative class group, which we can
provide in polynomial time for number fields of arbi-
trary degree. However, the general method uses the
Galois closure, whose degree can be exponential in
the degree of the field, thus restricting the direct ap-
plication of our work to arbitrary Galois extensions.
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